Bioculture-Based Treatment of Recalcitrant COD
Bioculture-Based Treatment of Recalcitrant COD in Pharmaceutical Effluents
Introduction

It often happens that an Effluent Treatment Plant’s (ETP) chemical oxygen demand (COD) degrading efficiency becomes stagnant at a certain point. Despite trying multiple wastewater treatment methods and technologies, breaking this threshold remains a challenge. The real culprit behind such scenarios is the presence of recalcitrant COD in pharma effluents.

Pharmaceutical wastewater, in particular, presents high COD and BOD challenges due to persistent Active Pharmaceutical Ingredients (APIs), solvents, and excipients that resist biological treatment. Conventional systems often struggle to meet regulatory compliance, making microbial culture-based treatment a promising alternative. This blog explores treatment efficiency, plant configurations, cost analysis, and pilot project insights for implementing enzyme-based bioculture in pharma effluent treatment.

To learn more about effective solutions for reduction of recalcitrant COD reduction in Pharmaceutical Effluents, feel free to contact us.

1. Understanding Bioculture-Based Treatment for Pharma Effluent
How Biocultures Work?

Microbial culture is a specialized microbial consortia capable of degrading recalcitrant COD through enzymatic breakdown. They work via:

Advanced oxidation processes – Breaks complex organic compounds into biodegradable intermediates. 

Co-Metabolism – Uses an additional carbon source to enhance pollutant degradation. 

Biofilm Formation – Protects microbes from toxic compounds and improves stability in treatment systems.

Targeted Degradation of Recalcitrant COD Components
Pharma CompoundCommon SourceMicrobial Strains UsedEnzymes InvolvedDegradation Pathway
ParacetamolPainkillersPseudomonas putida, Bacillus subtilisAmidase, LaccaseAmide hydrolysis to p-aminophenol, oxidation
Ibuprofen & DiclofenacNSAIDsSphingomonas sp., Rhodococcus sp.Dioxygenases, HydrolasesHydroxylation & carboxylation of aromatic rings
Ciprofloxacin & OfloxacinAntibioticsAcinetobacter sp., Pseudomonas aeruginosaMonooxygenasesQuinoline ring cleavage
Erythromycin & AzithromycinMacrolide AntibioticsBacillus licheniformisEsterase, OxidaseEster bond hydrolysis, oxidation
Estradiol & ProgesteroneHormonesComamonas testosteroni, Mycobacterium sp.Hydroxylase, DehydrogenaseSteroid ring hydroxylation
ChloramphenicolAntibioticsPseudomonas fluorescensReductase, HydrolaseNitro group hydrolysis
Azo Dyes (Erythrosine, Tartrazine)Coloring AgentsPseudomonas aeruginosa, Shewanella oneidensisAzoreductaseAzo bond cleavage
Nonylphenols, PEGsSurfactantsSphingomonas sp., Pseudomonas sp.Oxidase, β-OxidaseOxidation of alkyl chains
2. Treatment Systems Configurations Using Biocultures
Plant Design for Pharma Wastewater Treatment Process
Stage 1: Pre-Treatment (Equalization & Primary Treatment)

Objective: Remove suspended solids, neutralize pH, and reduce initial COD load.

Equalization Tank – Balances flow & pH (6.5–7.5).
Coagulation-Flocculation – Removes large particulates (e.g., PAC or FeCl₃).
Screening & Oil Removal – Eliminates large solids and oil residues.

Stage 2: Advanced Biological Treatment with Microbial Culture

✅ Moving Bed Biofilm Reactor (MBBR) or Sequential Batch Reactor (SBR) – Bioculture for STP wastewater treatment

✅ Optimized Microbial Seeding – Customised culture for targeted degradation. 

✅ Retention Time: 24–36 hours for reaction time.

Stage 3: Advanced Oxidation Processes & Membrane Filtration 

Fenton’s Process / Ozonation – Further breaks down recalcitrant COD

Membrane Bioreactor (MBR) or Reverse Osmosis (RO) – Final purification.

Stage 4: Sludge Management & Water Reuse

✅ Dewatering & Sludge Handling – Using filter press or centrifugation. 

✅ Effluent Recycling – Treated water reused for lagoons wastewater treatment.

3. Pilot Project Insights: Real-World Applications
Case Study 1: Antibiotic Manufacturing Effluent Treatment

📍 Location: India | COD Level: 10,000 mg/L

✅ Solution: Bioculture companies for wastewater treatment (Acinetobacter sp. & Pseudomonas sp. in MBBR). 

✅ Result:

  • COD reduced by 85% (Final COD: <500 mg/L).
  • Reduced toxicity – No microbial inhibition observed.
Case Study 2: NSAID (Ibuprofen & Diclofenac) Removal

📍 Location: Europe | COD Level: 8000 mg/L
✅ Solution: SBR + Microbial Culture Companies in India (Rhodococcus + Sphingomonas). 

✅ Result:

  • COD reduced by 90% (Final COD < 250 mg/L).
  • High removal of Ibuprofen (96%) & Diclofenac (89%).
4. Cost Analysis of Bioculture-Based Treatment
Cost ComponentEstimated Cost (₹/m³)Description
Bioculture Seeding₹3–6Initial inoculation for microbial growth
Reactor Operation (MBBR/SBR)₹15–20Aeration, energy, and microbial maintenance
AOP (Ozonation/Fenton’s Process)₹8–12Advanced oxidation for recalcitrant organics
Membrane Treatment (RO/MBR)₹12–18Filtration and final polishing
Total Treatment Cost₹38–56 per m³Cost-effective compared to ZLD (₹80-100 per m³)
Key Takeaways:
  • Bioculture-based treatment reduces overall cost by 30–50% compared to purely chemical or ZLD systems.
  • Lower sludge production compared to coagulation-based treatments.
  • Faster startup time (2–3 weeks) compared to conventional activated sludge.
Conclusion: The Future of Biocultures in Pharma Effluent Treatment

🔹 Bioremediation companies in India offer a sustainable & cost-effective solution for treating recalcitrant COD in pharma effluents.
🔹 Bioculture companies in India can provide enzyme-based bioculture tailored for specific APIs, ensuring high pollutant removal.
🔹  Integrating biocultures with advanced oxidation & MBBR/SBR technology enhances efficiency & meets regulatory standards.

If you’re looking for expert guidance or customized solutions for your ETP, our team is here to help!

Contact us today for a consultation or to learn more about how we can support your effluent treatment needs!

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Saving operational expenses for pharma business using bioremediation
Saving OPEX for a reputed Pharma Giant using Bioremediation
Introduction: 

The reputed pharmaceutical giant is known for contributing to the global pharmaceutical sector by using  bioremediation. This unit is one of the largest Active Pharmaceutical Ingredient (API) producers that manufactures products such as Tamsulosin, Metformin, Esomeprazole, etc. The Unit has a full-fledged Effluent Treatment Plant (ETP) which is a traditional Activated Sludge Process (ASP) system. The unit is committed to treating its industrial wastewater religiously. The unit had an Multi-Effect Evaporator (MEE) installed to treat high COD wastewater stream. Due to the production of multiple pharmaceutical products, the ETP received multiple effluent streams with tough-to-degrade pollutants like toluene, benzene, Metformin, Acetic Acid, Methanol, etc. Due to such high-strength wastewater streams, it was difficult for them to control ETP operations, using bioremediation which led to heavier expenses, specifically on the MEE operation, as it was receiving a heavier load than its designed capacity.

ETP details:

The industry had primary treatment, biological treatment, and then a tertiary treatment.

Flow (current)450 KLD
Flow (design)500 KLD
Type of processASP
No. of aeration tanks3 (in series)
Capacity of aeration tanks500 KL, 450 KL, 300 KL  respectively
Retention Time67 hours(combined)
MEE Details:
Capacity (current)12 KLD
Current inflow10 KLD
Inlet COD150000 ppm
Inlet TDS60000 ppm
Challenges:
Parameters (PPM)Avg. Inlet parameters Avg. Outlet parameters 
COD180009900
BOD50003000
TDS150009500
Operational Challenges:
  • The primary treatment system was working at 5% efficiency in terms of COD reduction.
  • The biological treatment system was working at an average 45% efficiency in terms of COD reduction.
  • They were struggling to effectively treat recalcitrant pollutants such as toluene, benzene, Metformin, Acetic Acid, and Methanol, which compelled them to run the ETP at 10% less hydraulic load.
  • A separate high COD stream was directed to MEE, leading to scaling and fouling in MEE.

Volume of stream to MEE: 10 KLD
COD: 150000 ppm
TDS: 80000 ppm

Financial Challenges:
  • Urea-DAP consumption: 2160 Kg/month of Urea and 1200 Kg/month of DAP were required to boost the poor biomass in the biological tanks.
  • Electricity consumption: Due to high COD effluent, the power requirement went up from a normal 14250 KWH to 20250 KWH monthly.
  • Raw Water Consumption: Due to high COD influent, there was a need for higher evaporation, hence around 100000 litres of water was used monthly for MEE.
  • Chemical Consumption: Due to high COD inflow in MEE, there was extensive scaling, due to which the MEE needed frequent cleaning with HCL: 22500 kg/month, EDTA: 11250 kg/month.
Extra Costs incurred per month:
CommodityUnits required
Urea(in Biological tank)2160 kg/month
DAP(in Biological tank)1200 kg/month
Raw water consumption100000 litres/ Month approx
HCL (10 % )5500 kg/month
EDTA3200 kg /month
Electricity(MEE)20250 KWH/month

The MEE cost per liter was coming to Rs. 1820/KL for 10 KLD capacity, while the overall WWTP (Wastewater Treatment Plant) cost to treat 450 KLD effluent swelled to Rs. 200/KLD.

The Approach:

The industry partnered with us to improve the efficiency of their biological units and to reduce operational costs using bioremediation in their WWTP.

We adopted a 3D approach that included:

  1. Research/Scrutiny:
    • Our team visited their manufacturing facility to examine the existing ETP process and scrutinize areas of improvement.
    • The visit helped us explore potential ETP optimization strategies in the biological treatment system.
  2. Analysis:
    • We analyzed the previous 3-month cumulative data of their ETP to observe trends in inlet-outlet parameters.
  3. Innovation (Bioaugmentation):
Desired Outcomes :
  1. Reduction of COD/BOD thereby improving the efficiency of biological tanks.
  2. Degradation of tough-to-degrade effluents and develop robust biomass to withstand shock loads.
  3. Reduction in scaling of MEE by reducing COD in biological systems and saving cost using bioremediation.
  4. Reducing consumption of UREA-DAP.
  5. Cost saving by treating high COD streams in main ETP.
Execution:

Our team selected two bioaugmentation products:

  1. T1B Aerobio:
    • A blend of specialized microbes that secrete enzymes capable of degrading tough pollutants like toluene, benzene, and Metformin.
    • Helps in reducing COD/BOD, stabilizing shock loads, and enhancing biomass stability.
  1. T1B MacMi:
    • A plant-based gel that acts as a nutrient source for bacteria.
    • Replaced UREA-DAP to provide essential macro and micronutrients for microbial growth.

                                       

Plan of Action:
  • Diverting 2 KLD of MEE inlet to the main ETP inlet with COD 150000 ppm.
  • Diverting 3 KLD of MEE reject to main ETP inlet with COD 25000 ppm.
  • Dosing of T1B Aerobio in all three biological tanks.
  • Dosing of T1B MacMi in all three tanks.

Average Inlet COD after the addition of streams: 18406 PPM

Results:
ParametersInlet parameters Secondary Outlet parameters (ppm)
COD18406-19000 ppm2200 ppm
BOD9290 to 10000 ppm1400 ppm 
Cost Saving :
CommodityUnits required before treatmentUnits required after treatment
Urea2160 kg/month432 kg/month
DAP1200 kg/month240 kg/month
Raw water consumption100000 litres/ Month approx50000 litres/Month
HCL (10 % )5500 kg/month4000 litres/month
EDTA3200 kg /month2050 litres/month
Electricity(Extra)675 KWH/day478 KWH/day

The MEE operational cost reduced to Rs. 1220/KLD, and the ETP cost was reduced to Rs. 160/KLD using bioremediation.

Key Achievements:
  • 85-89% COD & BOD reduction.
  • 20% reduction in ETP OPEX.
  • Full-capacity operations restored using bioremediation.
  • MEE dependency reduced.

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Anaerobio Bacteria & Treatment – Microbial Culture, Bio Culture & Product, Digestion, Wastewater, Microorganisms, Baffled Reactors (ABRs), Anaerobic Filter

Team One Biotech’s Anaerobio is a unique combination of anaerobic & facultative bacteria like methanogenic bacteria, acidogenic and acetogenic and hydrolytic bacteria that break down the organic waste sludge in the wastewater treatment process in absence of oxygen.

The microbiome mixture is highly efficacious in reducing organic pollutants and industrial waste materials into methane and reducing the generation of hydrogen sulphide gas thereby increasing the productivity of wastewater treatment plants and furnishing higher output of biogas.

Biomass carryover in an anaerobic digestion process is a widely common concern. It is extremely important that the biomass is healthy with matured flocs. This helps the bacteria to maintain a good sludge blanket inside the reactor. T1B Anaerobio moderates the sludge blanket formation at the bottom of the wastewater tank or clarifier. This allows the removal of small dirt particles, metals, and simpler compounds from the wastewater.

T1B Anaerobio supports all type of anaerobic digesters to control its biomass carryover

T1B Anaerobio | Consortium Of Microbes To Process Anaerobic Digestion, Hydrolysis – Can Be Used In Upflow Anaerobic Sludge Blanket Reactor

 Anaerobic Bacteria – Anaerobic Microbial Culture – Anaerobic Bio Culture – Anaerobic Bio Product – Anaerobic Treatment – Anaerobic Digestion – Anaerobic Wastewater Treatment – Anaerobic Filter – Anaerobic Microorganisms – Anaerobic Baffled Reactors (ABRs) – Microbial Strains – Biodegradation – Bioreactor – Methane Production – Organic Matter Removal – Wastewater Treatment – Microbial Consortia – Biogas – Acidogenesis – Methanogenesis – Hydrolysis – Microbial Community – Biomethanation – Temperature – Alkalinity – Sludge Break Down – Removal Of Organic Volatile Compounds VOC’s – Biogas Production – Acetogenesis – Upflow Anaerobic Sludge Blanket Digestion – UASB – Diverse Range Of Bacteria – Advanced Biochemicals – Hydrogen Sulfide And Methane – Bio Digester – Sludge Blanket – Sludge Wasting – Biomass Carryover – Improve Methane Generation – lower Hydrogen Sulfide Production – Enzyme – Bacteria And Enzyme Production – Bio Enzyme For Biogas – Anaerobic lagoon – EGSB (Expanded Granular Sludge Bed) Reactor – Fluidized Bed Reactors – Breakdown Of Organic Matter In The Absence Of Oxygen – Consortium Of Microorganisms – Renewable Energy – Wastewater Treatment – AD Process – Microbial Digestion – Digestate – Green Energy – Energy Efficiency – AD Technology

Scan the code