Sludge Bulking vs. Sludge Settling Ways to improve wastewater treatment in India
Sludge Bulking vs Settling: Biotech Companies in India

Our MLSS is quite high, but we are not getting enough settling. “ or “Our biomass development is very good as our MLSS is high, but we have very little BOD/COD reduction”. these statements are often given by EHS managers. However, the concept of MLSS is completely misunderstood; it’s never the quantity of MLSS, it’s always the quality of MLSS. The settling of sludge and BOD reduction always correspond with how good the MLSS is, and not how much it is.

This blog intricately explains the difference between sludge bulking and sludge settling, and which factors are necessary to look out for.

Sludge Settling vs Sludge Bulking:

With the growing awareness of operational efficiency, several biotech companies in India are now addressing sludge bulking challenges through microbial innovation and advanced diagnostics.

Healthy Sludge Settling:

In a well-operating secondary clarifier, biomass flocs are compact, dense, and settle rapidly. The supernatant above appears clear, and the sludge blanket remains stable.

Sludge Bulking:

Here, the sludge appears fluffy, loose, and struggles to compact at the bottom. The supernatant turns turbid, and sludge blankets may rise or disperse.

ParameterHealthy SettlingSludge Bulking
SVI (Sludge Volume Index)80–120 mL/g>150 mL/g
Sludge appearanceDense, compact flocsLoose, filamentous flocs
SupernatantClearTurbid
Settling time20–30 mins>45 mins
CauseBalanced systemFilamentous overgrowth, F/M imbalance
Why Good MLSS ≠ Good Settling

Operators often celebrate high MLSS as a sign of strong microbial population. But MLSS is a mass reading-It doesn’t distinguish between healthy floc-formers and problem-causing filamentous organisms.

“ Think of it like body weight: Two individuals weigh the same, but one may be with lean muscle, the other with excessive fat.

In bulking scenarios, the bulk of MLSS is held together by filamentous bacteria-these long, thread-like organisms stretch out of flocs, creating open, web-like structures that trap water and resist compaction.

Reliable biocultures companies have been instrumental in developing floc-forming microbial strains specifically tailored for bulking control.

What Causes Sludge Bulking?
  1. Filamentous Bacteria Overgrowth

Common species: Type 021N, Sphaerotilus, Microthrix parvicella, Thiothrix

These bacteria thrive under specific conditions such as:

Low DO (<1.0 mg/l) – especially at floc centers.

High F/M ratios – excess food leads to dominance of fast-growing filaments

Nutrient Imbalance– N and P deficiency affect floc formation

Surfactants and FOG – common in food, dairy, and textile industries

Hydraulic surges – shock loading from upstream process

Leading microbial companies in India are providing industry-specific solutions for complex ETP issues, helping clients achieve consistent results in variable conditions.

 

  1. F/M Ratio Imbalance

Too much organic load relative to MLSS results in excessive microbial growth, and filamentous bacteria often outcompete floc-formers.

Ideal F/M ratio: 0.2-0.5 kg BOD/kg MLSS/day

Bulking is more likely when F/M > 0.6 or < 0.1, especially during inconsistent feed conditions.

  1. pH and Toxic Shocks

Sudden changes in pH (below 6.5 or above 8.5) , or toxic loads (solvents, phenols, metals) can kill floc-formers and allow filaments to dominate during regrowth. However, Solutions like those from Team One Biotech, a known player among bioculture for ETP STP plant manufacturers, are reshaping how industries manage MLSS health and sludge behavior.

 

Decoding SVI and other key Indicators

Sludge Volume Index (SVI) is the gold standard for assessing settleability.

  • SVI = ( Settled sludge volume in 30 mins, mL/L) / MLSS (g/L)
  • SVI < 100 = Good settling
  • SVI 120–150 → Early warning of bulking
  • SVI > 200 → Severe bulking

Other red flags:

  • Rising sludge in the clarifier
  • Scum layer formation
  • Poor TSS in final discharge
  • Varying DO and pH patterns in aeration tanks
Countermeasures- How to fix Bulking?

In addition to microbial solutions, industrial odor control systems  also play a pivotal role in overall ETP performance and workplace hygiene.

Short-Term Fixes:

  • Chlorination or Peracetic Acid Dosing: Targets filamentous bacteria selectively. Start with 0.5–1 ppm, monitor response.
  • Increase DO Levels: Maintain >2.0 mg/L throughout the aeration tank, especially in large tanks or tanks with dead zones.
  • Sludge Wasting: Reduce SRT (sludge retention time) to control filament growth. Remove excess MLSS.
  • Polymers in Clarifier: For emergency clarity issues, short-term use of cationic polymers can compact sludge.

Long-Term Solutions:

  • Nutrient Balancing: Maintain COD:N:P at approx. 100:5:1. Add urea or DAP if needed.
  • Equalization Tank: Smooth out hydraulic/organic loading rates to the aeration tank.
  • Bioculture Regeneration: Consider seeding with robust floc-forming consortia after bulking episodes.
  • Upgrade Aeration: Switch to fine-bubble diffused aeration systems to improve oxygen transfer.
  • Micronutrient Support: Trace metals like iron, cobalt, and molybdenum support healthy floc formers.

If you’re exploring biocultures for ETP plant manufacturers in India or need effective bacteria solutions for wastewater treatment, Team One Biotech offers proven blends tested across sectors.

Conclusion:

Remember one quote: What settles well, treats well. MLSS and BOD tell only one part of the story – settleability, floc health, and microbial balance complete the picture.

As experts and EHS leaders, we must look beyond the dashboard. A 3500 mg/L MLSS might impress, but if your sludge floats and supernatant clouds, your ETP is already sending you a warning.

Looking for a trusted waste water treatment company to resolve sludge settling problems? Contact Team One Biotech today for tailored solutions and microbial consultation.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Anaerobic Wastewater Treatment: Demystifying Methanogenesis
Anaerobic Wastewater Treatment: Demystifying Methanogenesis

The wastewater treatment world is an unending sea of types of processes and variations. One such process, the anaerobic treatment, holds a prominent and popular reputation due to its low CAPEX-OPEX and generation of byproducts such as methane, which is valuable as well as a clean energy source.

The process that leads to methane production is known as methanogenesis-which is the final and slowest step in the anaerobic digestion chain, where intermediate acids and hydrogen are converted into methane.

However, the process is mostly underperforming in the industries due to its bottlenecks and variable mechanism. This blog helps readers understand the intricacies of methanogenesis and helps understand the concept and mechanism.

In the rapidly evolving landscape of anaerobic wastewater treatment, industries are recognizing the limitations of traditional systems and turning toward advanced, high-efficiency strategies. With increasing load from industrial effluent treatment, especially containing high COD and toxic compounds, the need for anaerobic bioreactor optimization is more critical than ever.

With the increasing demand for bacteria solutions for wastewater treatment, industries are actively seeking partners who understand both biology and process engineering.

Companies like Team One Biotech lead the way among bioculture companies and microbial companies in India, delivering high-performance strains suited for industrial ETPs.

We provide expert consulting and microbial formulations tailored for anaerobic systems. Contact us today to learn more about our solutions and transform your treatment process.

What is Methanogenesis?

Methanogenesis is the last step in anaerobic digestion, where the end products from acetogenesis and acedogenesis process are converted into methane gas and CO2 by methanogenic archaea.

Modern facilities strive for not just compliance but profitability through biogas production efficiency, transforming waste streams into energy assets. The use of engineered microbial consortia, such as T1B Anaerobio, ensures higher methane recovery from wastewater even under challenging conditions like salinity and shock loads.

Core stages of Anaerobic Digestion:

  1. Hydrolysis: Breakdown of complex organics (proteins, carbs, Fats)
  2. Acidogenesis: Fermentation into VFAs (volatile fatty acids), alcohol, H2.
  3. Acetogenesis: Conversion of VFAs into acetate, H2, and CO2.
  4. Methanogenesis: Final step producing CH4 and CO2.

Types of methanogens:

PathwayMicrobial GroupSubstrate
AcetoclasticMethanosaeta, MethanosarcinaAcetate → CH₄ + CO₂
HydrogenotrophicMethanobacterium, MethanococcusH₂ + CO₂ → CH₄

 

These microbes are obligate anaerobes, extremely sensitive to environmental shifts-and incredibly slow-growing.

Why does methanogenesis often fail?

As evident, it is important to have success in all three processes i.e. Hydrolysis, Acidogenesis, and Acetogeneis, before Methanogenesis  to succeed. This requires proper management of pH, temperature, HRT and induction of right biomass. However, in most cases all the three preceding processes are comparatively easier to get executed, it is this methanogenetic process only where most plants struggle due to:

  1. Acid accumulation/VFA Buildup
  • Acidogenesis is rapid, while methanogenesis is slow.
  • Result: VFA overload, which causes pH to drop below 6.8—a toxic zone for methanogens.

 

  1. Toxic Inhibitors

Common industrial effluents contain:

  • Heavy metals (Zn, Cu, Cr)
  • Sulfides
  • Phenols
  • Ammonia >2000 mg/L

These compounds directly inhibit methanogenic enzyme systems.

  1. Salinity and TDS stress

TDS above 15000-20000 ppm imposes osmotic stress, especially on Methanosaeta, which is already slow-growing.

 

  1. Lack of Granular Structure in Reactors

Granules in the sludge allow the methanogens to thrive in micro-environments.

  • Poor granulation = less protection = washout
How to Improve Methanogenesis- Practical Strategies

Improving methanogenesis requires a holistic approach involving operational tuning, microbial reinforcement, and environmental stability.

  1. Maintain Optimal pH: 6.8 – 7.4

Methanogens are extremely pH sensitive; any fluctuation can halt the methanogenic process that leads to unwanted reverses.

  1. Control Organic Loading Rate (OLR)

Gradually ramp up OLR during commissioning, ideal OLR: 1.5-3.5 kg COD/m3/day for stable systems. Overfeeding typically leads to acid overload and ultimately methanogen collapse.

  1. Ensure Adequate Retention Time

The ideal HRT should be between 8-15 days (depending on the substrate). The SRT should be even longer in high-loading systems.

  1. Use advanced Biocultures enriched in Methanogens

Key Traits of Effective Methanogenic Biocultures:

  • Contains both acetoclastic and hydrogenotrophic strains
  • High cell viability in anaerobic, low-oxygen environments
  • Pre-adapted to shock loads, high COD, and salinity

At Team One Biotech, our T1B Anaerobio blend includes halotolerant Methanobacterium and facultative syntrophic partners that stabilize early acid-phase products and prevent VFA accumulation.

  1. Add Conductive Materials (Bio-Stimulation)
  • Use activated carbon, biochar, or magnetite in digesters.
  • These promote direct interspecies electron transfer (DIET), bypassing slower H2 pathways
  • Result: Faster methanogenesis and increased CH4 yield
  1. Control Sulfates and Heavy Metals

 Sulfate-reducing bacteria (SRB) compete with methanogens for substrate.

  • High sulfide also directly poisons methanogens
Key Indicators of Methanogenesis Health
ParameterHealthy Range
pH6.8 – 7.4
VFA/Alkalinity ratio<0.3
ORP-300 to -400 mV
Biogas CH₄ content>60%
FoamingMinimal (indicates balance)
Gas production rateSteady increase or plateau
Methanogenesis is Fragile, but Fixable

Methanogenesis is the most sensitive yet rewarding step in anaerobic treatment. It’s where the “waste” becomes “resource,” and the environmental liability transforms into a clean, combustible asset.

But to get there, industries must move beyond legacy systems and general-purpose biology.

They must:

  • Understand the microbial bottlenecks
  • Deploy engineered or acclimated methanogens
  • Support them with pH buffering, controlled feeding, and granular retention

Only then can your anaerobic system realize its full potential — both in COD removal efficiency and renewable methane production.

Conclusion:

Achieving high COD removal technology performance depends heavily on maintaining organic loading rate control, optimal pH, and reducing VFA accumulation. Furthermore, granular sludge formation enhances microbial retention and process stability, which is vital in high-strength wastewater treatment systems.

Through targeted bioaugmentation for anaerobic digestion, enriched with salinity resistant methanogens, it’s now possible to manage volatile environments and optimize yield. These microbial consortium for ETP solutions include both acetoclastic and hydrogenotrophic archaea, enabling efficient conversion pathways and reduced inhibition.

One promising method includes introducing conductive material in digesters, which boosts DIET and facilitates faster VFA to methane conversion. This, combined with proper HRT/SRT balance and T1B Anaerobio application, unlocks new levels of process performance.

As we progress towards zero-waste water solutions and advanced ETP solutions, methanogenesis is no longer just a biological reaction—it’s a cornerstone of sustainable industrial practice.

In recent years, several biotech companies in India have made significant strides in anaerobic treatment technologies, offering customized microbial formulations.

Team One Biotech is one of the leading Biotech Companies in India, providing advanced microbial solutions like bacteria for ETP treatment and bacteria culture for wastewater treatment.
📩 Reach out now to enhance your wastewater treatment efficiency.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Thermophilic vs Mesophilic Anaerobic Wastewater Treatment in Industries

The anaerobic treatment of wastewater heavily relies on trends, and unfortunately, adaptation and innovation are very slow in progression compared to rising pollution. 

Although we are all talking about the use of AIs, sensors, IOTs, and efficient hardware, unfortunately, when we consider the industrial wastewater treatment,and broader industrial effluent treatment, we are still stuck at the same processes we were 30 years ago. If you would like to know how we are optimising wastewater treatment methods in diverse environments, feel free to connect with us today.

There needs to be a continuous update at the process level, because 99 % anaerobic plants are mesophilic, i.e, work at a temperature of 30-38 *c. In regards to biocultures for wastewater treatment, the mesophilic treatment is prominent; however, the thermophilic treatment is much more effective and compatible. 

Although it is an uncommon type of ETP water treatment, when it comes to tough-to-degrade effluents such as those with recalcitrant COD, or those with phenols, Aldehydes, etc., the thermophilic microbes treatment can be a game changer in anaerobic digestion.

This blog explores when it makes sense to shift from mesophilic to thermophilic wastewater systems, the practical advantages and challenges, and what it means for plant operators and environmental engineers.

Let us start with the basics:

ParameterMesophilic (30–38°C)Thermophilic (50–60°C)
Microbial growth rateModerateHigh
Biogas yieldModerateHigher (10–25% increase)
Pathogen killLimitedExcellent (>99%)
Energy input requiredLowerHigher
Process stabilityHighSensitive to changes
Start-up timeShorterLonger

The core of the thermophilic system lies in its high-energy fast result mechanism. The hydrolysis process is much faster, resulting in increased metabolic rate and superior pathogen control in biological wastewater treatment.

Issues where thermophilic treatment can be effective:
  1. High-Strength Industrial Wastewaters:

Effluents from industries such as dairies, food processing, slaughterhouses, distilleries and starch industries have higher levels of protiens, lipids, and polysaccharides. Thermophilic systems hydrolyze and degrade these faster, leading to:

  • Higher COD, BOD degrading efficiency.
  • Higher biogas production
  • Shorter HRT (hydraulic retention time)
  • Enhanced treatment of high-strength wastewater

2. Excess Sludge and Biomass Handling Issues:

  • While most mesophilic anaerobic systems produce higher sludge, the thermophilic system produces lower quantities of excess sludge and reduces volatile solids.

3. Strict Pathogen and Odor Control

  • The thermophilic systems give 99% pathogen elimination in STP/Centralized ETPs that handle fecal sludge or pathogen prone waste, which is crucial if:
  • Sludge is reused in agriculture
  • Water is recycled for non-potable uses
  • Especially relevant for optimized wastewater microbiome management

4. Waste Heat:

  • In case of high waste steam, condensate, or cogeneration (CHP) units, the thermal energy can be internally sourced.
  • This supports efficient energy recovery within the plant
Microbial Diversification: Fragility Meets Efficiency

In case of the microbial cultures for wastewater treatment, the thermophilic microbes are completely different from mesophilic ones. Although thermophiles are fewer but are formidable with higher metabolic abilities in the organic waste degradation.

Key Observations:

  • Thermophilic methanogens are more sensitive to pH, VFA spikes, and loading rates.
  • Shock loads (especially of fats, solvents, or salts) can cause faster crashes.
  • Granular sludge formation is more difficult at thermophilic temperatures; biofilms or hybrid systems are better suited.
Biogas enhancement: Quantitative and Qualitative

Thermophilic systems offer 10-25 % higher biogas yield per unit COD removed. More importantly, the methane content is often higher (up to 70-75%) compared to 60-65% in mesophilic digestion.

This makes the Thermophilic process enticing where:

  • On-site biogas is used for power/steam
  • Fossil fuel replacement is a business or ESG goal
  • Carbon credit mechanisms or green energy policies apply
  • Also aligns with zero liquid discharge (ZLD) and carbon neutrality efforts
Operational & Engineering Challenges in sewage treatment process

1. Temperature maintenance:

Temperature maintenance is the key of thermophilic processes, which is altogether challenging both technically and economically, especially in large tanks and in colder environments. 

2. Narrower process Window

Thermophiles work in a smaller range.  Any variation in:

  • pH (ideal: 7.2-7.6)
  • Alkalinity ratio (IA/TA < 0.3 )
  • VFA accumulation

Can lead to performance drops

3. Start-Up Lag

Thermophilic start-up can take 30-60 days, requiring:

  • Seeding with adapted sludge
  • Step-wise temperature ramping
  • High monitoring effort

4. Foaming & Scum

Due to high gas production and surfactant sensitivity, thermophilic systems foam more easily, especially during acidification.

Know the Process, Not just the Temperature:

To be precise, a thermophilic system is not for every ETP (Eluent treatment plant), however, it is effective for any ETP where it is applied. It no doubt is high energy, difficult in operations, and with fragile microbial populations, but it always outpaces mesophilic treatment in COD/BOD control, methane gas production, and cleaner sludge.

et, it’s not a plug-and-play upgrade. You must rethink your sludge management, monitoring protocols, nutrient balancing, and energy integration.

The question isn’t whether thermophilic digestion works—it’s whether your plant is ready to manage the precision and potential that comes with it.”

If you’re designing or upgrading an anaerobic system and want to make it future-proof—especially for energy recovery or zero-liquid discharge (ZLD) ambitions—don’t ignore the thermophilic path. Just walk it carefully.

Partner with Team One Biotech for expert guidance in optimizing your ETP’s aeration and biological treatment processes. Our tailored bioculture solutions and technical expertise ensure enhanced treatment efficiency in anaerobic digestion and wastewater microbiome optimization.

Learn more at www.teamonebiotech.com or reach out at sales@teamonebiotech.com/8855050575

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Toxic Shockwaves Travel Through ETPs How to Deal
How Toxic Shockwaves Travel Through ETPs: A Deep Dive into Impact, Zone-Wise Failure, and Recovery

A sudden or abrupt change from regular mechanisms, schedules, habits, or play is detested everywhere, right from living to non-living beings and from nature to industries or the metropolis.  These sudden changes sometimes come with the signs of change that, if identified at the right time, either prevent or make one prepare. But not all thunders come up with lightning.

Here, as we talk about wastewater treatment in ETPs, shock loads remain one of the most common and feared issues.With the onset of shock loads or the sudden introduction of a toxic system with lethal compounds leads to complete disarray in the system, and the whole microbial population gets attacked and damaged and it a tough task to reboot it and get it back to its normal stage.

However, if we know how toxic shockwaves in ETP travel in different systems and what signs the system produces before and during the onset, we can empower us to control this unwanted phenomenon.👉 Need expert support in handling or preventing toxic shockwaves in ETP? Contact our team at TeamOne Biotech for consultation, solutions, and support.

Let’s explore the shockwave travel mechanisms, early signs of warning, zone-wise failure and how to recover.

What is Toxic Shock ?

A sudden short-terms ingress of physical or chemical conditions that disrupts routine mechanisms an d disrupts microbial populations.

The Culprits: Common Toxic Agents:

  • Heavy metals (e.g., Cr⁶⁺, Zn²⁺, Cu²⁺): Inhibit enzymes and damage membranes.
  • Phenols and aromatic solvents: Disrupt cell walls, denature proteins.
  • Quaternary ammonium compounds (QACs): Destroy microbial membranes.
  • Strong acids or alkalis: Denature enzymes and destroy extracellular polymeric substances (EPS).
  • High TDS or salts: Cause osmotic shock, dehydration of microbial cells.
  • Temperature spikes: Above 40°C can be lethal to most ETP microbes.

A high COD  is not always directly proportional to toxicity. Even in a batch with COD of 2000 ppm, a 50 ppm phenol will cause disruptions.

How do toxic shockwaves in ETP travel through each zone?

1.Anaerobic Zone:

The anaerobic digestors or UASB reactors break down organics into methane or carbon dioxide by acidogenic and methanogenic bacteria.

The Effect of Toxic Shock:

Methanogens are more prone to shock as they are highly sensitive to pH shifts, metals, and aromatic solvents. A toxic load here may: 

  • Kill methanogens outright, collapsing methane production.
  • Lead to accumulation of VFAs (volatile fatty acids), crashing the pH below 6.5.
  • Result in black sludge, gas bubbles, and floating scum layers.
Indicators:

  • Drop in biogas flow rate (if monitored).
  • pH drop in digester effluent.
  • Sulphide-like odor and gas toxicity.
  • Foaming or bubbling at inlet distribution zones.
Recovery Options :

  • Stop influent flow immediately
  • Neutralize VFAs to bring pH back to 7.2 to 7.6
  • Inoculate with fresh anaerobic bioculture.
  • Feed diluted influent after 3-5 days of stabilization
2.Anoxic Zone: The Invisible Impact Zone

The function of the anoxic zone is highly dependent on nitrifying and denitrifying bacteria. 

The Effect of Toxic Shock:

Denitrifiers are facultative—more robust than methanogens—but still impacted by solvents, surfactants, and metals.

  • Nitrate remains unreduced.
  • Partial reduction leads to nitrite accumulation, which is also toxic.
  • Disruption in redox balance halts nitrogen removal.
Indicators:

  • Rising NO₃⁻ or NO₂⁻ in secondary-treated water.
  • No bubbles or gas generation from the anoxic tank surface.
  • Slight odor of chlorine or nitric oxide due to nitrite oxidation.
  • No apparent foaming or color change—this failure is usually silent.
Recovery Options :

  • Supplement the carbon source ( eg, methanol or acetate ) to restart denitrification.
  • Check and adjust DO and ORP to stay below 0.3 mg/L and -100 to -300 mV, respectively.
  • Restart mixing gently—denitrification is sensitive to turbulence.
3.Aerobic Zone: 

Aerobic microbes (heterotrophs, nitrifiers) oxidize organics and nitrogen, producing CO₂, nitrate, and water.

The effect of Toxic Shock:

It is comparatively easier to identify shocks easily in Aerobic Zones:

  • Increase in soluble COD and turbidity due to Cell lysis.
  • Release of ammonia and phosphates into the water.
  • Poor settling followed by clarifier overflows due to the disintegration of flocs.
  • Pathogen population surge due to collapsed microbial competition.
Indicators:

  • Septic-like: conditions-black, greasy foam with foul smell.
  • A sharp increase in SVI.
  • Filamentous and Nocardia become prominent.
  • Sudden DO depletion even with aeration on.
Recovery:

  • Stop the influent
  • Maintain DO at 3-4 mg/l
  • Slowly start the hydraulic load with 25-30% for the first 5-6 days and then gradually increase.
  • Waste heavily to remove lysed or decayed biomass.
  • Start adding bioculture with robust and shock-tolerant bacteria.
System-Wide Effects Ripple effects:

Secondary Clarifier:

  • Overloaded with dispersed solids → turbid effluent.
  • Sludge blanket floats or rises.
  • Polymer usage increases for sludge settling.
Sludge Dewatering:

  • Decayed biomass becomes non-dewaterable.
  • Centrifuges and belt presses clog easily.
  • Sludge has high moisture content and low calorific value.
Tertiary Treatment:

  • UF/RO membranes foul rapidly with organic colloids.
  • Sand filters choke with fine, dispersed flocs.
  • Chemical dosing (PAC, alum) surges.
Recovery Timeline Framework

PhaseActionTypical Duration
Initial ArrestStop feeding, start aeration, dose buffers0–24 hours
StabilizationAdd bio-culture, monitor parameters1–3 days
Gradual LoadingResume with diluted or treated influent4–7 days
Full RecoveryReturn to design load with full microbial function7–15 days
Conclusion:

AN ETP is like a living ecosystem with uncertainties. If we can find our early warning signs, we can prevent the discrepancies arising due to toxic shock waves in ETP. Although it is a very tough scenario to tackle but if prevented in time, the chances of vulnerability become very less. 

👉 Facing recurring issues or need expert intervention? Reach out to TeamOne Biotech — your partners in effective wastewater treatment and process recovery.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Phosphate removal in a chemical manufacturing plant in Madhya Pradesh
Background

A prominent chemical manufacturing unit situated in MP near Ratlam is our existing client to whom we provided technology to treat high COD and TDS effluent. They again approached us due to their experience working with us. They wanted to treat an effluent stream with high phosphate content upto 1500-2000 ppm. They asked us to use their old ETP, revive it , commission and make it efficient for phosphate treatment.

👉 Looking to optimize your ETP for phosphate treatment, COD, or BOD removal? Contact us to explore the right biological phosphorus and removal technologies for your industry!

1st Phase: Scrutiny

Our team of experts visited the factory to introspect and identify scope of improvements.

OLD ETP details:

The ETP had primary treatment, biological treatment (Anaerobic), and then a tertiary treatment.

Flow (current)350 KLD
Type of processUASB
No. of UASBR1
Capacity of biological tank950 KL
Parameters of the stream with Phosphate:

Parameters Avg. Inlet parameters(PPM)
COD4300
Phosphate Content1500-1800
TDS3000
2nd Phase : The Blueprint

After scrutiny and brainstorming with our R&D, we concluded to transform the old ETP apparatus into an EBPR unit, i.e., Enhanced Biological Phosphorus removal unit, which involves the introduction of PAOs (polyphosphate-accumulating bacteria) into the biological system along with physico-chemical treatment in primary and tertiary systems, respectively, of the old ETP.

ETP process optimization:

An efficient EBPR unit requires anaerobic as well as aerobic system, as in anaerobic the RbCODs get transferred into VFAs, which are then absorbed by PAOs for efficient phosphate uptake, which is dispersed during the anaerobic process. The PAOs then absorb the phosphate rapidly in the aerobic system. Hence, biomass with phosphate-absorbed PAOs is allowed to settle in the clarifier, and then WAS is removed.

In this scenario, the ETP had a UASB system, but no Aeration system, hence:

  1. We utilized a spare tank of capacity 300 KL located next to USABR, and transformed it into an aeration tank by installing diffusers.
  2. After our recommendation, the industry installed a 50 KL FRP clarifier after the sedimentation system.

Thus, we converted the old ETP into a facultative EBPR unit with integrated biological phosphorus removal capability.

3rd Phase : Technology and Execution

1. Selecting biocultures:

For UASB:

T1B Anaerobio

T1B Anaerobio bioculture solutions for phosphate treatment

The perfect solution for an Anaerobic system consists of robust bacteria that can efficiently work in anaerobic conditions, leveraging efficiency in terms of:

  • COD reduction
  • Biomass Generation
  • Methane Generation
  • F/M ratio optimization

Here, since our goal was phosphate treatment and reduction, we amalgamated PAOs as well, which made the product extremely effective to be used in the developed EBPR system.

For Aerobic Tank:

T1B Aerobio:

T1B aerobio bioculture solutions for phosphate treatment

Equipped with highly robust and selective strains of bacteria which when combined with PAOs, made T1B Aerobio the best-suited weapons to remove phosphate levels, thereby increasing the efficiency of the EBPR unit.

2.Dosing:

Initially, we provided a dosing schedule for 60 days, in which 1st 30 days was loading dose, with a higher product quantity, and the second  30 days dose was maintenance dose, which was 1/4th of the loading dose.

ProductT1B AnaerobioT1B Aerobio
Loading Dose100 kgs60 kgs
Maintenance dose40 kgs20 kgs
Point of additionUASBAerobic Tank
3.Process optimization:

Our target was to achieve MLSS of 3500-4000 in the first 15 days. After that, the WAS was wasted at 15 KLD, and RAS was recirculated at 5 KLD.

Results:

After 60 days of implementation:

Parameters Primary OutletUASB OutletClarifier Outlet
COD39001900800
Phosphate1300-1500850-900180
COD Reduction10 %~ 55 %82 %
Phosphate reduction %8-10%~ 65 %~85-90%
Conclusion

With the combined effect of T1B Anaerobio and T1B Aerobio bioculture and process optimization, the client achieved an 85-90 % reduction through the biological system, which further increased after tertiary system. This translated into:

  • Improved microbial activity and settleability.
  • Stable effluent quality, meeting compliance standards.
  • Biocultures are effective in phosphate removal.

This case demonstrates how biology-driven solutions, coupled with system know-how, can deliver tangible performance and cost benefits in industrial wastewater treatment.

👉 Want similar results at your facility? Let’s talk! Contact us now to implement sustainable, biology-based solutions.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Phosphate Removal with Biocultures
The menace of Phosphate- How to deal with it using Biocultures?

Phosphates are one of the prominent water pollutants, as designated by the NGT in 2019. A Suo-motu cognizance was also taken by the NGT on detergents and especially phosphate accumulation in rivers and water bodies, causing toxic foam, algal deposition, and eutrophication. Phosphates also exert odour and color. Strict limits have been issued to control phosphate accumulation. However, at the wastewater treatment levels, phosphate removal is a bit tough job as it requires multiple stages, effective bioculture solutions, and technical expertise to do so. 

Although chemical and physical separation are essential, it is the bioculture that act as  game changers in phosphate reduction.👉 Want to know how to integrate biocultures in your treatment process? Contact Us to learn more.

Let’s explore the effectiveness and correct mechanism of phosphate removal using biocultures:

1.What are Phosphates?

Phosphates (PO₄³⁻)  are chemical compounds that contain phosphorus.  In industry, mostly chemical intermediates and food processing units have a high amount of phosphates.

2.Why is it a problem for ETP/STP?

  • Poor effluent quality: NGT and most pollution control boards are very stringent in the phosphate levels in the final outlet. If the criteria are not met, it may lead to a bad ESG report and even shutdowns.
  • Eutrophication: Phosphates promote excessive algal deposition and plant growth, leading to depletion of oxygen in receiving water bodies.
  • Effect on biological treatment: High phosphate content may disturb the biological/microbial population. It leads to even growth of filamentous bacteria, leading to sludge bulking, poor biomass settling, and compromising the efficiency of BOD/COD removal.
  • Increased Chemical Dosing costs: High phosphate = higher chemical use → higher sludge production → more dewatering and disposal costs.
  • Risk of Struvite Scaling:  in systems with high phosphate and ammonia, struvite (MgNH₄PO₄) may precipitate, causing scaling in pipes, pumps, and digestors, increasing OPEX and CAPEX.
3. Enhanced biological phosphorus removal (EBPR)

Enhanced biological phosphorus removal (EBPR) processes are designed to culture communities of microorganisms in MLSS that have the Phosphorus Treatment and Removal Technologies. It involves use of specific microbial strains and put in ETP as biocultures. The strains absorb phosphate and are PAOs (polyphosphate-accumulating organisms). These are likely to comprise a variety of bacterial subpopulations, including Acinetobacter, Rhodocyclus, and some morphologically identified coccus-shaped bacteria.

An ideal EBPR process starts with:

  • Anaerobic Zone: The PAOs are first subjected to an Anaerobic environment where Biodegradable COD is fermented into VFA (Volatile Fatty Acids), particularly acetate and propionate, which serve as food for PAOs. PAOs thus metabolize polyphosphate reserve and release phosphorus.
  • Aerobic Zone: In the Aerobic zone, the PAOs take up the released phosphates by multiplying and oxidizing carbon reserves built in the anaerobic phase. Here, WAS (Waste Activated Sludge ) and RAS (Return Activated Sludge) play a very important role.
Critical factors for the success of EBPR:

  • Influent Characteristics:  a minimum influent BOD:P ratio of 25:1 is necessary in order to provide adequate conditions for PAOs to thrive. Note that this ratio is applicable to the influent of the anaerobic phase of the EBPR process.
  • Integrity of the Anaerobic zone: Establishing and maintaining strict anaerobic conditions in the anaerobic zone is critical for PAOs to be able to consume VFAs and store carbon compounds. The presence of oxygen or nitrates will disrupt the process by placing PAOs at a competitive disadvantage with other bacterial populations.
  • Variability: Variability in flows can result in variable anaerobic and aerobic contact times, which can disrupt the process. Flow and load variability can also impact the influent BOD:P ratio. 
  • Dissolved Oxygen: Excessive dissolved oxygen should not travel back to the anaerobic zone hence, DO should be maintained between 0.5 to 1.0 mg/l at the end of the aeration zone.
Conclusion: 

Phosphate removal is different from conventional ETP operations. It requires the right microbes, technical know-how, and physical and chemical treatments. And when physical and chemical treatments are combined with biocultures, can enhance phosphate removal by up to 90%, and also improve microbial population management in wastewater.Ready to revolutionize your wastewater treatment system with biocultures? Contact Us today for customized solutions.

Inference: Phosphorus Treatment and Removal Technologies

To know more Call us @ 7769862121 or Mail : sales@teamonebiotech.com

T1B SustainX can solve the malnutrition of ETP! How and Why?

What you read in the book is always different in the real-world hook!! A quote so accurately framed that and can be applied in every professional aspect, including wastewater treatment. No matter how many SOPs or books we read, the ground reality is different, each ETP is different, each industrial effluent is different and one of the most overlooked challenges across these systems is the malnutrition of ETP, where the biological treatment process suffers due to imbalanced or inadequate nutrient supply.

In the world of industrial wastewater treatment, biological systems are the backbone of sustainable and cost-effective operations. But even the best industrial application of microorganisms can’t function without the right nutrients. And for the right nutrients, the same old C:N:P ratio is followed. And to make up this ratio, unfortunately, the conventional nutrient sources such as UREA-DAP, which are supposed to be used for agriculture, are often used in abundance in common effluent treatment plants (CETPs), which is itself a self-sabotage practice.This leads to a common but critical issue—malnutrition of ETP, where effluent treatment plants suffer from poor nutrient availability or imbalance despite excessive chemical input.

Now, readers must be wondering as to what the ideal solution should be for this, as for every nutrient requirement, we need separate chemicals, like for nitrogen, it’s UREA, for phosphorus, it’s DAP, etc.

Well, Team One Biotech has a solution to this universal problem as well. Introducing T1B SustainX- a natural blend of nutrients in powdered form. A 100% replacement of UREA, DAP, Phosphoric acid, and other conventional nutrients.

Team One Biotech’s T1B SustainX offers a smart, eco-friendly, and efficient alternative. Here’s why it’s time to reconsider your ETP nutrient strategy—and how SustainX provides a smart, eco-friendly, and efficient alternative. Contact Us to know how SustainX can transform your operations.

The problem of using fertilizers in Industries as the nutrient source:

Despite their widespread use, these fertilizers contribute to the malnutrition of ETP, disrupting microbial health and system performance.Industrial effluent is not same as soil where we can put the traditional fertilizers. Using such products may give results, but it has some side effects too such as:

  • Nutrient Spikes & Imbalances: Urea, DAP and other products tend to release ammonia and phosphorous very rapidly causing sudden spike in nutrient availability leading to shock induction in the microbes present.
  • Limited Bioavailability: A significant portion of these nutrients is lost through runoff or chemical interactions, offering poor uptake efficiency.
  • Sludge Bulking & Odors: Excess ammonia from urea or phosphorus from DAP can trigger undesirable side effects like bulking, foaming, and odor removal.
  • Eutrophication Risk: Residual nutrients in treated effluents can pollute water bodies, leading to algal blooms and ecological damage.
T1B SustainX: One stop Nutrition Solution

It is a revolutionary and advanced nutritional solutions consists of balanced C:N:P , which is bioavailable.

Key Benefits of SustainX:

  • Scientifically designed pre-balanced ratio — no need for DAP/urea
  • Boosts microbial growth under anaerobic process and stress
  • Enhances COD/BOD reduction
  • Reduces sludge and odor removal issues
  • Improves methane yield in anaerobic digestion of biomass
  • Improves sludge quality and settleability
  • Reduced operational upsets and foaming
  • Stable system performance over time
  • Reduces operational hassle of doing multiple products
Practical Replacement comparison:

ParameterDAP/Urea/Phosphoric AcidT1B SustainX (Science Power)
Nutrient AvailabilityImmediate (risk of spike)Gradual (consistent)
BioavailabilityMedium to lowHigh (organic complex)
Microbial DiversityLimited impactSignificant positive impact
Sludge ProductionModerate to highReduced and stabilized
Residual NutrientsHigh risk (eutrophication)Minimal residual nutrients
Environmental ImpactHigher pollution potentialEco-friendly and sustainable
T1B SustainX- Nutrient Profile

T1B SustainX is a one blend-multiple nutrient product that gives all the necessary nutrients in one dose:

  • Organic Carbon → Primary electron donor and carbon source for microbial growth and co-metabolic degradation.
  • Total Nitrogen → Essential for amino acids, nucleic acids, and enzyme production, driving biomass formation.
  • Phosphate → Supports ATP synthesis, genetic material integrity, and membrane stability.
  • Calcium → Strengthens cell walls, stabilizes enzymes, and enhances bioflocculation and sludge settling.
  • Magnesium → Key cofactor for ribosomes, ATP handling, and enzyme regulation.
  • Sulfur → Needed for sulfur-containing amino acids, coenzymes, and redox balance.
  • Essential Micronutrient Metal Cofactors + Organic Micronutrient Coenzyme Precursors + Nitrogenous Organic Monomers and Metabolic Precursors

It also includes essential micronutrient metal cofactors, organic precursors, and nitrogenous metabolic compounds to enrich biological sewage treatment plants.

Real-World Impact:

SustainX has proven effective across a wide range of industrial effluents, including:

  • Pharmaceutical & Chemical Wastewater
  • Distilleries, Dairies & Food Units
  • Textiles & Detergents
  • CETPs and STPs
  • Petroleum & Pesticide Industries

Whether dealing with high COD, high TDS, or complex toxic loads, SustainX addresses the root causes of malnutrition of ETP by offering a complete, bioavailable nutrient solution for stable, high-performance biological treatment.

Upgrade Your ETP Nutrition- A Smarter and Sustainable Way:

With increasing regulatory scrutiny and rising sustainability expectations, continuing with outdated nutrient practices is no longer viable. T1B SustainX empowers ETP operators to:

  • Reduce chemical dependency
  • Improve operational efficiency
  • Cut down secondary pollution
  • Foster robust microbial ecosystems

Learn more at www.teamonebiotech.com or reach out at sales@teamonebiotech.com/8855050575

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Oxygen Transfer Efficiency in wastewater treatment
Oxygen Transfer Efficiency vs. Real-World Conditions: The Hidden Impacts of Diffuser Fouling and Uneven Airflow

In the world of wastewater treatment, Oxygen Transfer Efficiency (OTE) is a critical performance indicator, especially in biological treatment systems where aerobic microorganisms drive the breakdown of organic matter. On paper, system designs often promise high standard oxygen transfer efficiency based on clean-water testing. But in real-world conditions, actual oxygen transfer often falls significantly short — and two often-overlooked culprits are diffuser fouling and uneven airflow distribution.

At Team One Biotech, we help ETPs and STPs uncover these hidden inefficiencies. Contact us today to audit and improve your aeration system’s real-world performance.

Understanding Oxygen Transfer Efficiency

OTE is the percentage of oxygen from the air that actually dissolves into the wastewater. Higher efficiency means better microbial activity, lower energy costs, and more effective treatment. Bottom diffused aeration systems, particularly those with fine bubble diffuser oxygen transfer efficiency, are widely used due to their ability to maximize surface area and minimize energy use.

However, clean-water testing used to estimate standard OTE doesn’t reflect operational realities like biofilm buildup, particulate matter, or operational inconsistencies.

The Silent Saboteur: Diffuser Fouling

Over time, aeration diffusers — especially fine-pore ones — become clogged with biofilms, sludge solids, and inorganic scaling. This fouling:

  • Increases air resistance, reducing overall airflow.
  • Causes larger bubbles, decreasing oxygen transfer surface area.
  • Leads to non-uniform oxygen distribution, harming microbial populations in under-aerated zones.

As a result, a system that once transferred oxygen at 30% efficiency might drop to 15–20%, doubling the energy requirement for the same biological load.

🔍 Poor sludge management can accelerate diffuser fouling, leading to cascading operational issues.

Tip: Regular diffuser inspection, cleaning schedules, and selecting fouling-resistant materials (e.g., PTFE-coated membranes) can mitigate this loss.

Uneven Airflow: An Invisible Imbalance

Even with clean diffusers, uneven airflow distribution due to pipe layout, blower inconsistency, or back pressure variations can cause:

  • Overaeration in some zones (wasted energy, poor floc formation),
  • Underaeration in others (anaerobic pockets, filamentous growth, odor issues).

This imbalance affects overall oxygen transfer efficiency and biological performance, especially in large or compartmentalized aeration tanks.

The Cost of Ignoring Reality

Ignoring these issues doesn’t just degrade standard OTE — it impacts the entire secondary system:

  • Reduced MLSS activity due to low DO,
  • Increased sludge production from partial degradation,
  • Higher energy bills with little performance gain,
  • Poor compliance with discharge norms due to high BOD/COD.
Real-World Solutions
  1. Flow Balancing: Use air flow meters and control valves to ensure uniform distribution.
  2. Blower Management: VFD-controlled blowers can respond to real-time DO demands, reducing peaks and troughs.
  3. Smart Monitoring: Modern SCADA systems and DO sensors help identify zones of concern early.
  4. Preventive Maintenance: Scheduled diffuser cleaning and aeration audits pay off in energy savings and treatment reliability.
Final Thoughts

It’s time the industry moves beyond theoretical OTE and embraces a “Reality-Based Aeration Strategy”. Understanding and addressing diffuser fouling and uneven airflow are essential for sustainable wastewater treatment — both environmentally and economically.

At Team One Biotech, we specialize in supporting ETPs and STPs in optimizing their biological systems, including audits that uncover hidden losses in aeration efficiency. Let’s not just treat wastewater — let’s treat it wisely.

Reach out to us today to make sure your system isn’t silently losing efficiency — and money.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Scan the code