aerobic, anaerobic, and anoxic treatment
Anoxic vs. Anaerobic vs. Aerobic Wastewater Treatment
Introduction

Wastewater treatment relies on biological processes to remove contaminants before the treated water is discharged or reused. The three primary treatment conditions—anoxic, anaerobic, and aerobic—each utilize different microbial mechanisms to break down pollutants. Understanding these processes is essential for selecting the most efficient stp water treatment process based on wastewater characteristics and treatment goals.

This blog explores the origins, efficiency, and prominence of each treatment type.For expert solutions in wastewater treatment, visit Team One Biotech.

1. Aerobic Wastewater Treatment
Origins and Development

Aerobic wastewater treatment has its roots in the late 19th and early 20th centuries with the development of the activated sludge process (1913, UK). It gained prominence with the increasing need for effective wastewater management in industrial and municipal applications.

Process Mechanism
  • Requires oxygen to support aerobic microbial activity.
  • Bacteria break down organic matter into carbon dioxide, water, and biomass.
  • Common systems include biological sewage treatment plant, trickling filters, and aerated lagoons.

Biological Oxygen Demand (BOD) + O2 + Biomass + nutrients(N/P) → 

CO2 + H2O + new biomass + energy

Efficiency and Prominence
  • Efficiency: High organic matter removal (90-98% BOD and COD reduction).
  • Energy Demand: High energy consumption due to aeration.
  • Sludge Generation: Produces more sludge compared to anaerobic processes.
  • Prominence: Widely used for municipal wastewater treatment and industrial wastewater treatment due to its ability to handle high organic loads efficiently.
2. Anaerobic Wastewater Treatment
Origins and Development

Anaerobic treatment dates back to ancient times when natural decomposition processes were observed in wetlands. The modern anaerobic process was developed in the late 19th century, with advancements in anaerobic digestion of biomass occurring in the 20th century.

Process Mechanism
  • Operates in the absence of oxygen.
  • Microorganisms break down organic matter into methane, carbon dioxide, and biomass through hydrolysis, acidogenesis, acetogenesis, and methanogenesis.
  • Common systems include Upflow Anaerobic Sludge Blanket (UASB) reactors, gases produced in anaerobic sludge digesters, and expanded granular sludge bed (EGSB) reactors.
Efficiency and Prominence
  • Efficiency: Moderate to high COD removal (70-90%) but requires post-treatment.
  • Energy Demand: Low energy requirement; produces biogas as a byproduct.
  • Sludge Generation: Minimal sludge production.
  • Prominence: Used for high-strength industrial wastewater (e.g., food processing, dairy, breweries) and working of sewage treatment plant in developing regions.
3.Anoxic Wastewater Treatment
Origins and Development

Anoxic treatment became prominent with the increasing need for nitrogen removal in wastewater treatment plants. It gained traction in the late 20th century with the development of biological nutrient removal (BNR) systems.

Process Mechanism
  • Operates with no free oxygen but uses chemically bound oxygen (e.g., nitrates).
  • Facilitates denitrification, where bacteria convert nitrates (NO3-) to nitrogen gas (N2), reducing nitrogen pollution.
  • Common systems include anoxic zones in activated sludge plants and sequencing batch reactors (SBRs).
Efficiency and Prominence
  • Efficiency: Essential for nitrogen removal (80-95% nitrate reduction).
  • Energy Demand: Lower than aerobic treatment but requires a carbon source.
  • Sludge Generation: Moderate sludge production.
  • Prominence: Critical for wastewater treatment plants with strict nitrogen discharge regulations.
Removal of nitrogen:

Nitrification: NH4+ +1½O2→NO2 +2H+ + H2O aerobic conditions

NO2 + ½O2→NO3

Denitrification:NO3 + BOD→N2+H2O+COanoxic conditions

Comparison Table
ParameterAerobic TreatmentAnaerobic TreatmentAnoxic Treatment
Oxygen RequirementHighNoneNo free oxygen (uses nitrates)
Energy DemandHighLow (energy-positive)Low
Organic Removal EfficiencyHigh (90-98%)Moderate-High (70-90%)Specific to nitrogen removal
Sludge ProductionHighLowModerate
ProminenceMunicipal and industrial wastewaterIndustrial, high-strength wastewaterUsed in biological nutrient removal
Conclusion:

Selecting between aerobic, anaerobic, and anoxic treatment depends on the specific wastewater characteristics and treatment objectives.

  • Aerobic treatment is highly efficient but energy-intensive.
  • Anaerobic treatment is energy-efficient and generates biogas but may require post-treatment.
  • Anoxic treatment is crucial for nitrogen removal and is often used in combination with aerobic systems.

By integrating these wastewater treatment processes effectively, wastewater treatment plants can optimize efficiency, odor removal, and meet regulatory standards.

If you are looking for expert wastewater management solutions from trusted sanitation companies, including specialized services such as sanitization, and waste removal, we’ve got you covered

For more details on wastewater management solutions, contact us at Team One Biotech.

📧 Email: sales@teamonebiotech.com
🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Implementation of SBR systems in CETP
Implementation of SBR System in a CETP with T1B Aerobio Bioculture
Introduction:

The Common Effluent Treatment Plant (CETP) situated in Rajasthan handles effluents from over 40 industries in the RIICO sector. Equipped with SBR system in CETP technology, the system faces difficulty in handling the load of Chemical Oxygen Demand (COD) above 2000 PPM, owing to discharges from textiles and chemicals. The SBR wastewater treatment system, with 4 biological tanks and 4 cycles a day, was struggling with its efficiency in terms of COD reduction, resulting in high outlet COD levels. This excess load was carried over to the Reverse Osmosis (RO) system, leading to membrane damage and increased operational expenses (OPEX).

To explore effective solutions for optimizing wastewater treatment and improving COD reduction efficiency, you can reach out to Team One Biotech

ETP details:

The industry had primary treatment, biological treatment, and then a tertiary treatment.

Flow (current)2 MLD
Type of processSBR
No. of aeration tanks4
Capacity of aeration tanks3 MLD each
Total cycles in 24 hrs4
Duration of fill and Aeration cycle1.5 hrs and 2.5 hrs respectively
Challenges: 
Parameters Avg. Inlet parameters(PPM)Avg. Outlet parameters(PPM)
COD3000800
BOD1800280-300
TDS30001200
Operational Challenges:
  • The primary treatment was working at only 5% efficiency in terms of COD reduction.
  • The entire SBR process was lagging in COD degradation efficiency and sustainability of Mixed Liquor Volatile Suspended Solids (MLVSS).
  • Carryover COD and unsettled biomass were traveling to RO membranes, causing severe damage.
The Approach:

The agency operating the CETP wastewater treatment plant approached us to solve these pressing issues.

We adopted a 3D approach:
  1. Research/Scrutiny:
    Our team visited their facility during the winter season as they faced many challenges. We scrutinized every aspect of the plant to assess the efficiency of each component.
  2. Analysis:
    We analyzed six months of historical data to identify trends in wastewater treatment parameters, including BOD removal efficiency, COD degradation, and total dissolved solids (TDS) reduction.
  3. Innovation:
    Based on our findings, we developed a bioaugmentation strategy by selecting customized products and designing a targeted dosing schedule.
Desired Outcomes:
  • Significant COD and BOD reduction, improving the efficiency of biological treatment systems.
  • Degradation of hard-to-treat industrial effluents and formation of stable biomass to handle shock loads.
  • Enhanced biomass settling, reducing carryover COD and preventing RO membrane damage.
Execution:

Our team selected two products :

T1B Aerobio Bioculture: This product consisted of a blend of microbes as bioculture selected as per our analysis to degrade the recalcitrant COD, and ensure sustainability in the SBR system in CETP. 

Plan of Action:
  1. We devised a 60-day dosing program, divided into two phases:
  • Day 1 to Day 30: Loading dose to accelerate microbial population growth and generate biomass.
  • Day 31 to Day 60: Maintenance Dose, to maintain the population of biomass generated.
2. Dosing Strategy:
  • Dosing was carried out in all 4 SBR aeration tanks during filling and aeration cycles to ensure optimum microbial activity.
Results:
ParametersInlet parametersTank 4 outlet parameters (ppm)
COD3000 ppm280-300 ppm
BOD1800 ppm60-82 ppm

diagram of before and after bioculture, SBR system in CETP
The implementation of bioaugmentation program by SBR system in CETP resulted in significant improvements in the performance of biological units in their WWTP:

✅ Achieved 90% COD and BOD reduction, compared to the previous 70% efficiency.
✅ Reduced CETP operational expenditure (OPEX) by 20%.
✅ Increased ETP capacity utilization to handle full hydraulic load.
✅ Improved biological process stability, making it more resilient to influents fluctuations.
RO membrane health restored, reducing damage by 80%.

Conclusion:

The successful implementation of bioaugmentation with T1B Aerobio Bioculture led to an efficient, cost-effective, and sustainable wastewater treatment system. By enhancing COD degradation efficiency, reducing BOD levels, and improving biomass stability, the CETP wastewater treatment achieved outstanding results. This highlights the importance of biological wastewater treatment solutions in optimizing industrial effluent treatment processes.

 Discover how T1B Aerobio Bioculture can help you today!

Struggling with high COD levels in your wastewater treatment system? Contact us today to know more about how T1B Aerobio Bioculture can help you today!

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

STP – Odour Control, Odour Reduction, Cheap BIoproducts, Powder Bioproduct, Liquid Bioproduct, Bio Culture For Sewage Treatment Plant

Several factors can undermine the effectiveness and efficiency of a sewage treatment plant. Factors such as composition (high levels of organic matter, nutrients or toxicity) of sewage wastes, higher temperatures that can reinforce microbial activity that breaks down organic sludge, hydraulic retention time, adequate oxygen supply to support microbial growth, and appropriate alkalinity of wastewater are among the most common ones.

It naturally becomes vital that any microbial formulation added to any STP can work through these variables. Team One Biotech’s “T1B STP” is a consortium of resilient & robust bacteria that facilitate the biodegradation of sewage wastes & organic pollutants by converting them into carbon dioxide, water and smaller biodegradable compounds.

T1B STP controls the formation of excessive organic sludge by rapidly degrading it. It also improves the settling rate of activated sludge for filtration and settling processes.

Longer retention time although allows for a more thorough treatment, it also increases the risk of odours and the growth of harmful organisms. T1B STP specializes in controlling filamentous bacterial growth in sewage management and also eliminates odours.

With its many beneficial properties like the high potency of reducing BOD, COD and ammonia, improving conditions for better floc formations, and controlling sludge bulking and excess foaming T1B STP applications are many. T1B STP microbial formulation can be used in any sewage treatment plant, sewer lines, STP pumping stations, municipal waste disposals and even for compact plants in housing complexes, hospitals etc.

T1B STP | Bacteria Consortia For Sewage Treatment Plant (STP) – For Sewage Odor Control, Organic Sludge Reduction, Sludge Bioremediation

STP Odour Control – Odour Reduction In STP – Cheap Bioproducts For STP – Powder Bioproduct For STP – liquid Bioproduct For STP – Bio Culture For Sewage Treatment Plant (STP) – Powder Stp Sewage Treatment Plant Bio Culture – Bio STP – STP Culture – STP Bio Culture – Sewage Treatment Plant Chemicals – Biological Culture For Sewage Treatment Plant – Sewage Treatment Plant – Sewage Treatment – Biocultures For Sewage – Sewage Biocultures – Sewage Bacteria – Microbial Product For Sewage Treatment – Sewage Bioremediation – Odour Control In Sewage – STP Odour Control – Sludge Reduction – Reuse Of Sewage – Grey Water Treatment – Black Water Treatment – Sludge Reduction – Electricity Savings – Chemical For Sewage Treatment – Urine Treatment – FOG In Sewage – Bio Treatment Of Sewage – Sewage Sludge – Activated Sludge – Microbial Consortia – Microbial Inoculants – Bioreactor – Anaerobic Digestion – Nutrient Removal – Ammonia Oxidation – Denitrification – Phosphorus Removal – Microbial Enzymes – Biosurfactants – Aerobic Bacteria – Anaerobic Bacteria – Facultative Bacteria – Bio Enzyme – Enzymes – COD Removal – BOD Removal – Ammoniacal Nitrogen Removal – Sludge Degradation – Removing Oils, Fats And Grease – Reduces Aeration Requirement – Enzyme Producing Microbes – Enzyme Producing bacteria – Naturally Occurring Microbes – Bio Culture Bacteria Solutions – Enzyme Solutions – Bio Enhancer – Microbial Inoculum – Probiotic Bacteria – Municipal Waste Water Treatment – Bioculture Product – MLSS Development – Eco-Friendly Method Of Sewage Treatment

Scan the code