T1B SustainX can solve the malnutrition of ETP! How and Why?

What you read in the book is always different in the real-world hook!! A quote so accurately framed that and can be applied in every professional aspect, including wastewater treatment. No matter how many SOPs or books we read, the ground reality is different, each ETP is different, each industrial effluent is different and one of the most overlooked challenges across these systems is the malnutrition of ETP, where the biological treatment process suffers due to imbalanced or inadequate nutrient supply.

In the world of industrial wastewater treatment, biological systems are the backbone of sustainable and cost-effective operations. But even the best industrial application of microorganisms can’t function without the right nutrients. And for the right nutrients, the same old C:N:P ratio is followed. And to make up this ratio, unfortunately, the conventional nutrient sources such as UREA-DAP, which are supposed to be used for agriculture, are often used in abundance in common effluent treatment plants (CETPs), which is itself a self-sabotage practice.This leads to a common but critical issue—malnutrition of ETP, where effluent treatment plants suffer from poor nutrient availability or imbalance despite excessive chemical input.

Now, readers must be wondering as to what the ideal solution should be for this, as for every nutrient requirement, we need separate chemicals, like for nitrogen, it’s UREA, for phosphorus, it’s DAP, etc.

Well, Team One Biotech has a solution to this universal problem as well. Introducing T1B SustainX- a natural blend of nutrients in powdered form. A 100% replacement of UREA, DAP, Phosphoric acid, and other conventional nutrients.

Team One Biotech’s T1B SustainX offers a smart, eco-friendly, and efficient alternative. Here’s why it’s time to reconsider your ETP nutrient strategy—and how SustainX provides a smart, eco-friendly, and efficient alternative. Contact Us to know how SustainX can transform your operations.

The problem of using fertilizers in Industries as the nutrient source:

Despite their widespread use, these fertilizers contribute to the malnutrition of ETP, disrupting microbial health and system performance.Industrial effluent is not same as soil where we can put the traditional fertilizers. Using such products may give results, but it has some side effects too such as:

  • Nutrient Spikes & Imbalances: Urea, DAP and other products tend to release ammonia and phosphorous very rapidly causing sudden spike in nutrient availability leading to shock induction in the microbes present.
  • Limited Bioavailability: A significant portion of these nutrients is lost through runoff or chemical interactions, offering poor uptake efficiency.
  • Sludge Bulking & Odors: Excess ammonia from urea or phosphorus from DAP can trigger undesirable side effects like bulking, foaming, and odor removal.
  • Eutrophication Risk: Residual nutrients in treated effluents can pollute water bodies, leading to algal blooms and ecological damage.
T1B SustainX: One stop Nutrition Solution

It is a revolutionary and advanced nutritional solutions consists of balanced C:N:P , which is bioavailable.

Key Benefits of SustainX:

  • Scientifically designed pre-balanced ratio — no need for DAP/urea
  • Boosts microbial growth under anaerobic process and stress
  • Enhances COD/BOD reduction
  • Reduces sludge and odor removal issues
  • Improves methane yield in anaerobic digestion of biomass
  • Improves sludge quality and settleability
  • Reduced operational upsets and foaming
  • Stable system performance over time
  • Reduces operational hassle of doing multiple products
Practical Replacement comparison:

ParameterDAP/Urea/Phosphoric AcidT1B SustainX (Science Power)
Nutrient AvailabilityImmediate (risk of spike)Gradual (consistent)
BioavailabilityMedium to lowHigh (organic complex)
Microbial DiversityLimited impactSignificant positive impact
Sludge ProductionModerate to highReduced and stabilized
Residual NutrientsHigh risk (eutrophication)Minimal residual nutrients
Environmental ImpactHigher pollution potentialEco-friendly and sustainable
T1B SustainX- Nutrient Profile

T1B SustainX is a one blend-multiple nutrient product that gives all the necessary nutrients in one dose:

  • Organic Carbon → Primary electron donor and carbon source for microbial growth and co-metabolic degradation.
  • Total Nitrogen → Essential for amino acids, nucleic acids, and enzyme production, driving biomass formation.
  • Phosphate → Supports ATP synthesis, genetic material integrity, and membrane stability.
  • Calcium → Strengthens cell walls, stabilizes enzymes, and enhances bioflocculation and sludge settling.
  • Magnesium → Key cofactor for ribosomes, ATP handling, and enzyme regulation.
  • Sulfur → Needed for sulfur-containing amino acids, coenzymes, and redox balance.
  • Essential Micronutrient Metal Cofactors + Organic Micronutrient Coenzyme Precursors + Nitrogenous Organic Monomers and Metabolic Precursors

It also includes essential micronutrient metal cofactors, organic precursors, and nitrogenous metabolic compounds to enrich biological sewage treatment plants.

Real-World Impact:

SustainX has proven effective across a wide range of industrial effluents, including:

  • Pharmaceutical & Chemical Wastewater
  • Distilleries, Dairies & Food Units
  • Textiles & Detergents
  • CETPs and STPs
  • Petroleum & Pesticide Industries

Whether dealing with high COD, high TDS, or complex toxic loads, SustainX addresses the root causes of malnutrition of ETP by offering a complete, bioavailable nutrient solution for stable, high-performance biological treatment.

Upgrade Your ETP Nutrition- A Smarter and Sustainable Way:

With increasing regulatory scrutiny and rising sustainability expectations, continuing with outdated nutrient practices is no longer viable. T1B SustainX empowers ETP operators to:

  • Reduce chemical dependency
  • Improve operational efficiency
  • Cut down secondary pollution
  • Foster robust microbial ecosystems

Learn more at www.teamonebiotech.com or reach out at sales@teamonebiotech.com/8855050575

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Implementation of SBR system in a CETP
Implementation of SBR System in a CETP with T1B Aerobio Bioculture
Introduction: 

The SBR system in a CETP situated in Rajasthan handles effluents from over 40 industries in the RIICO sector the system faces difficulty in handling the load of COD above 2000 PPM, owing to discharges from textiles and  chemicals. The SBR system with 4 biological tanks and 4 cycles a day was struggling with its efficiency in terms  of COD reduction, due to which the outlet COD was very high and the load was carried on to the RO, leading to  damage of membranes and high OPEX. Contact us today to learn how we can help optimize your industrial effluent treatment plant (ETP) with customized bioaugmentation solutions.

ETP details: 

The industry had primary treatment, biological treatment, and then a tertiary treatment. 

Flow (current) 2 MLD
Type of process SBR
No. of aeration tanks 4
Capacity of aeration tanks 3 MLD each
Total cycles in 24 hrs 4
Duration of fill and Aeration cycle 1.5 hrs and 2.5 hrs respectively
Challenges:
Parameters Avg. Inlet parameters(PPM) Avg. Outlet parameters(PPM)
COD 3000 800
BOD 1800 280-300
TDS 3000 1200
Operational Challenges: 
  • The primary treatment was working at 5 % efficiency in terms of COD reduction 
  • The whole SBR system was lagging in COD degradation efficiency and sustainability of MLVSS as well. 
  • The Carryover COD and unsettled biomass was traveling to RO, damaging membranes. 
The Approach: 

The agency operating the SBR system in a CETP approached us to solve their current issues.  

We adopted a 3D approach that included : 

  1. Research/Scrutiny :  
  • Our team visited their facility during the winter season as they encountered many issues at that  

         time. Team scrutinized every aspect of the plant to analyze the efficiency of each element. 

  • The visit gave us a complete idea of their processes, current efficiency, trends, and our scope of  

         work.  

  1. Analysis : 
  • We analyzed the previous 6-month cumulative data of their ETP to see trends in the inlet-outlet  

         parameters’ variations and the permutation combinations related to it. 

  1. Innovation :  
  • After the research and analysis our team curated customized products and their dosing schedules  with formulation keeping in mind the plan of action to get the desired results. This process is            called  bioaugmentation. 
Desired Outcomes : 
  1. Reduction of COD/BOD thereby improving the efficiency of biological tanks. 
  2. Degradation of tough-to-degrade effluents and develop robust biomass to withstand shock loads. 
  3. Ensuring proper settling of Biomass to stop carryover to RO, thereby preventing damage to RO membranes.
Execution: 

Our team selected two products : 

T1B aerobio product

T1B Aerobio Bioculture: This product consisted of a blend of microbes as bioculture  

selected as per our analysis to degrade the recalcitrant COD, and ensure sustainability in  

the SBR system.  

Plan of action: 
  1. We devised a 60 days dosing plan, which was further divided into two phases: 
  • Day 1 to day 30 : Loading dose, to develop the population of bacteria and generate biomass.
  • Day 31 to Day 60: Maintenance Dose, to maintain the population of biomass generated. 
  1. Dosing pattern: We advised dosing in all 4 SBR tanks cycle wise viz. during filling and Aeration, to give  the bioculture proper mixing and necessary DO. 
Results: 
Parameters Inlet parameters Tank 4 outlet parameters (ppm)
COD 3000 ppm 280-300 ppm
BOD 1800 ppm 60-82 ppm

Before and after adding bioculture

The implementation of the bioaugmentation program resulted in significant improvements in the performance  of biological units in their WWTP: 

  • We were able to achieve around 90 % reduction from their current inlet parameters in COD & BOD,  which was only 70% earlier. 
  • The overall ETP OPEX was reduced by 20%. 
  • The ETP achieved full capacity operations in terms of hydraulic load. 
  • The biological process became more stable and resilient to fluctuations in the influent characteristics. 
  • The RO membrane health was restored and and their damage reduced up to 80%.

📧 Want similar results for your ETP or STP? Contact us for more Information.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Scan the code