T1B SustainX can solve the malnutrition of ETP! How and Why?

What you read in the book is always different in the real-world hook!! A quote so accurately framed that and can be applied in every professional aspect, including wastewater treatment. No matter how many SOPs or books we read, the ground reality is different, each ETP is different, each industrial effluent is different and one of the most overlooked challenges across these systems is the malnutrition of ETP, where the biological treatment process suffers due to imbalanced or inadequate nutrient supply.

In the world of industrial wastewater treatment, biological systems are the backbone of sustainable and cost-effective operations. But even the best industrial application of microorganisms can’t function without the right nutrients. And for the right nutrients, the same old C:N:P ratio is followed. And to make up this ratio, unfortunately, the conventional nutrient sources such as UREA-DAP, which are supposed to be used for agriculture, are often used in abundance in common effluent treatment plants (CETPs), which is itself a self-sabotage practice.This leads to a common but critical issue—malnutrition of ETP, where effluent treatment plants suffer from poor nutrient availability or imbalance despite excessive chemical input.

Now, readers must be wondering as to what the ideal solution should be for this, as for every nutrient requirement, we need separate chemicals, like for nitrogen, it’s UREA, for phosphorus, it’s DAP, etc.

Well, Team One Biotech has a solution to this universal problem as well. Introducing T1B SustainX- a natural blend of nutrients in powdered form. A 100% replacement of UREA, DAP, Phosphoric acid, and other conventional nutrients.

Team One Biotech’s T1B SustainX offers a smart, eco-friendly, and efficient alternative. Here’s why it’s time to reconsider your ETP nutrient strategy—and how SustainX provides a smart, eco-friendly, and efficient alternative. Contact Us to know how SustainX can transform your operations.

The problem of using fertilizers in Industries as the nutrient source:

Despite their widespread use, these fertilizers contribute to the malnutrition of ETP, disrupting microbial health and system performance.Industrial effluent is not same as soil where we can put the traditional fertilizers. Using such products may give results, but it has some side effects too such as:

  • Nutrient Spikes & Imbalances: Urea, DAP and other products tend to release ammonia and phosphorous very rapidly causing sudden spike in nutrient availability leading to shock induction in the microbes present.
  • Limited Bioavailability: A significant portion of these nutrients is lost through runoff or chemical interactions, offering poor uptake efficiency.
  • Sludge Bulking & Odors: Excess ammonia from urea or phosphorus from DAP can trigger undesirable side effects like bulking, foaming, and odor removal.
  • Eutrophication Risk: Residual nutrients in treated effluents can pollute water bodies, leading to algal blooms and ecological damage.
T1B SustainX: One stop Nutrition Solution

It is a revolutionary and advanced nutritional solutions consists of balanced C:N:P , which is bioavailable.

Key Benefits of SustainX:

  • Scientifically designed pre-balanced ratio — no need for DAP/urea
  • Boosts microbial growth under anaerobic process and stress
  • Enhances COD/BOD reduction
  • Reduces sludge and odor removal issues
  • Improves methane yield in anaerobic digestion of biomass
  • Improves sludge quality and settleability
  • Reduced operational upsets and foaming
  • Stable system performance over time
  • Reduces operational hassle of doing multiple products
Practical Replacement comparison:

ParameterDAP/Urea/Phosphoric AcidT1B SustainX (Science Power)
Nutrient AvailabilityImmediate (risk of spike)Gradual (consistent)
BioavailabilityMedium to lowHigh (organic complex)
Microbial DiversityLimited impactSignificant positive impact
Sludge ProductionModerate to highReduced and stabilized
Residual NutrientsHigh risk (eutrophication)Minimal residual nutrients
Environmental ImpactHigher pollution potentialEco-friendly and sustainable
T1B SustainX- Nutrient Profile

T1B SustainX is a one blend-multiple nutrient product that gives all the necessary nutrients in one dose:

  • Organic Carbon → Primary electron donor and carbon source for microbial growth and co-metabolic degradation.
  • Total Nitrogen → Essential for amino acids, nucleic acids, and enzyme production, driving biomass formation.
  • Phosphate → Supports ATP synthesis, genetic material integrity, and membrane stability.
  • Calcium → Strengthens cell walls, stabilizes enzymes, and enhances bioflocculation and sludge settling.
  • Magnesium → Key cofactor for ribosomes, ATP handling, and enzyme regulation.
  • Sulfur → Needed for sulfur-containing amino acids, coenzymes, and redox balance.
  • Essential Micronutrient Metal Cofactors + Organic Micronutrient Coenzyme Precursors + Nitrogenous Organic Monomers and Metabolic Precursors

It also includes essential micronutrient metal cofactors, organic precursors, and nitrogenous metabolic compounds to enrich biological sewage treatment plants.

Real-World Impact:

SustainX has proven effective across a wide range of industrial effluents, including:

  • Pharmaceutical & Chemical Wastewater
  • Distilleries, Dairies & Food Units
  • Textiles & Detergents
  • CETPs and STPs
  • Petroleum & Pesticide Industries

Whether dealing with high COD, high TDS, or complex toxic loads, SustainX addresses the root causes of malnutrition of ETP by offering a complete, bioavailable nutrient solution for stable, high-performance biological treatment.

Upgrade Your ETP Nutrition- A Smarter and Sustainable Way:

With increasing regulatory scrutiny and rising sustainability expectations, continuing with outdated nutrient practices is no longer viable. T1B SustainX empowers ETP operators to:

  • Reduce chemical dependency
  • Improve operational efficiency
  • Cut down secondary pollution
  • Foster robust microbial ecosystems

Learn more at www.teamonebiotech.com or reach out at sales@teamonebiotech.com/8855050575

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

aerobic, anaerobic, and anoxic treatment
Anoxic vs. Anaerobic vs. Aerobic Wastewater Treatment
Introduction

Wastewater treatment relies on biological processes to remove contaminants before the treated water is discharged or reused. The three primary treatment conditions—anoxic, anaerobic, and aerobic—each utilize different microbial mechanisms to break down pollutants. Understanding these processes is essential for selecting the most efficient stp water treatment process based on wastewater characteristics and treatment goals.

This blog explores the origins, efficiency, and prominence of each treatment type.For expert solutions in wastewater treatment, visit Team One Biotech.

1. Aerobic Wastewater Treatment
Origins and Development

Aerobic wastewater treatment has its roots in the late 19th and early 20th centuries with the development of the activated sludge process (1913, UK). It gained prominence with the increasing need for effective wastewater management in industrial and municipal applications.

Process Mechanism
  • Requires oxygen to support aerobic microbial activity.
  • Bacteria break down organic matter into carbon dioxide, water, and biomass.
  • Common systems include biological sewage treatment plant, trickling filters, and aerated lagoons.

Biological Oxygen Demand (BOD) + O2 + Biomass + nutrients(N/P) → 

CO2 + H2O + new biomass + energy

Efficiency and Prominence
  • Efficiency: High organic matter removal (90-98% BOD and COD reduction).
  • Energy Demand: High energy consumption due to aeration.
  • Sludge Generation: Produces more sludge compared to anaerobic processes.
  • Prominence: Widely used for municipal wastewater treatment and industrial wastewater treatment due to its ability to handle high organic loads efficiently.
2. Anaerobic Wastewater Treatment
Origins and Development

Anaerobic treatment dates back to ancient times when natural decomposition processes were observed in wetlands. The modern anaerobic process was developed in the late 19th century, with advancements in anaerobic digestion of biomass occurring in the 20th century.

Process Mechanism
  • Operates in the absence of oxygen.
  • Microorganisms break down organic matter into methane, carbon dioxide, and biomass through hydrolysis, acidogenesis, acetogenesis, and methanogenesis.
  • Common systems include Upflow Anaerobic Sludge Blanket (UASB) reactors, gases produced in anaerobic sludge digesters, and expanded granular sludge bed (EGSB) reactors.
Efficiency and Prominence
  • Efficiency: Moderate to high COD removal (70-90%) but requires post-treatment.
  • Energy Demand: Low energy requirement; produces biogas as a byproduct.
  • Sludge Generation: Minimal sludge production.
  • Prominence: Used for high-strength industrial wastewater (e.g., food processing, dairy, breweries) and working of sewage treatment plant in developing regions.
3.Anoxic Wastewater Treatment
Origins and Development

Anoxic treatment became prominent with the increasing need for nitrogen removal in wastewater treatment plants. It gained traction in the late 20th century with the development of biological nutrient removal (BNR) systems.

Process Mechanism
  • Operates with no free oxygen but uses chemically bound oxygen (e.g., nitrates).
  • Facilitates denitrification, where bacteria convert nitrates (NO3-) to nitrogen gas (N2), reducing nitrogen pollution.
  • Common systems include anoxic zones in activated sludge plants and sequencing batch reactors (SBRs).
Efficiency and Prominence
  • Efficiency: Essential for nitrogen removal (80-95% nitrate reduction).
  • Energy Demand: Lower than aerobic treatment but requires a carbon source.
  • Sludge Generation: Moderate sludge production.
  • Prominence: Critical for wastewater treatment plants with strict nitrogen discharge regulations.
Removal of nitrogen:

Nitrification: NH4+ +1½O2→NO2 +2H+ + H2O aerobic conditions

NO2 + ½O2→NO3

Denitrification:NO3 + BOD→N2+H2O+COanoxic conditions

Comparison Table
ParameterAerobic TreatmentAnaerobic TreatmentAnoxic Treatment
Oxygen RequirementHighNoneNo free oxygen (uses nitrates)
Energy DemandHighLow (energy-positive)Low
Organic Removal EfficiencyHigh (90-98%)Moderate-High (70-90%)Specific to nitrogen removal
Sludge ProductionHighLowModerate
ProminenceMunicipal and industrial wastewaterIndustrial, high-strength wastewaterUsed in biological nutrient removal
Conclusion:

Selecting between aerobic, anaerobic, and anoxic treatment depends on the specific wastewater characteristics and treatment objectives.

  • Aerobic treatment is highly efficient but energy-intensive.
  • Anaerobic treatment is energy-efficient and generates biogas but may require post-treatment.
  • Anoxic treatment is crucial for nitrogen removal and is often used in combination with aerobic systems.

By integrating these wastewater treatment processes effectively, wastewater treatment plants can optimize efficiency, odor removal, and meet regulatory standards.

If you are looking for expert wastewater management solutions from trusted sanitation companies, including specialized services such as sanitization, and waste removal, we’ve got you covered

For more details on wastewater management solutions, contact us at Team One Biotech.

📧 Email: sales@teamonebiotech.com
🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Anaerobio Bacteria & Treatment – Microbial Culture, Bio Culture & Product, Digestion, Wastewater, Microorganisms, Baffled Reactors (ABRs), Anaerobic Filter

Team One Biotech’s Anaerobio is a unique combination of anaerobic & facultative bacteria like methanogenic bacteria, acidogenic and acetogenic and hydrolytic bacteria that break down the organic waste sludge in the wastewater treatment process in absence of oxygen.

The microbiome mixture is highly efficacious in reducing organic pollutants and industrial waste materials into methane and reducing the generation of hydrogen sulphide gas thereby increasing the productivity of wastewater treatment plants and furnishing higher output of biogas.

Biomass carryover in an anaerobic digestion process is a widely common concern. It is extremely important that the biomass is healthy with matured flocs. This helps the bacteria to maintain a good sludge blanket inside the reactor. T1B Anaerobio moderates the sludge blanket formation at the bottom of the wastewater tank or clarifier. This allows the removal of small dirt particles, metals, and simpler compounds from the wastewater.

T1B Anaerobio supports all type of anaerobic digesters to control its biomass carryover

T1B Anaerobio | Consortium Of Microbes To Process Anaerobic Digestion, Hydrolysis – Can Be Used In Upflow Anaerobic Sludge Blanket Reactor

 Anaerobic Bacteria – Anaerobic Microbial Culture – Anaerobic Bio Culture – Anaerobic Bio Product – Anaerobic Treatment – Anaerobic Digestion – Anaerobic Wastewater Treatment – Anaerobic Filter – Anaerobic Microorganisms – Anaerobic Baffled Reactors (ABRs) – Microbial Strains – Biodegradation – Bioreactor – Methane Production – Organic Matter Removal – Wastewater Treatment – Microbial Consortia – Biogas – Acidogenesis – Methanogenesis – Hydrolysis – Microbial Community – Biomethanation – Temperature – Alkalinity – Sludge Break Down – Removal Of Organic Volatile Compounds VOC’s – Biogas Production – Acetogenesis – Upflow Anaerobic Sludge Blanket Digestion – UASB – Diverse Range Of Bacteria – Advanced Biochemicals – Hydrogen Sulfide And Methane – Bio Digester – Sludge Blanket – Sludge Wasting – Biomass Carryover – Improve Methane Generation – lower Hydrogen Sulfide Production – Enzyme – Bacteria And Enzyme Production – Bio Enzyme For Biogas – Anaerobic lagoon – EGSB (Expanded Granular Sludge Bed) Reactor – Fluidized Bed Reactors – Breakdown Of Organic Matter In The Absence Of Oxygen – Consortium Of Microorganisms – Renewable Energy – Wastewater Treatment – AD Process – Microbial Digestion – Digestate – Green Energy – Energy Efficiency – AD Technology

STP – Odour Control, Odour Reduction, Cheap BIoproducts, Powder Bioproduct, Liquid Bioproduct, Bio Culture For Sewage Treatment Plant

Several factors can undermine the effectiveness and efficiency of a sewage treatment plant. Factors such as composition (high levels of organic matter, nutrients or toxicity) of sewage wastes, higher temperatures that can reinforce microbial activity that breaks down organic sludge, hydraulic retention time, adequate oxygen supply to support microbial growth, and appropriate alkalinity of wastewater are among the most common ones.

It naturally becomes vital that any microbial formulation added to any STP can work through these variables. Team One Biotech’s “T1B STP” is a consortium of resilient & robust bacteria that facilitate the biodegradation of sewage wastes & organic pollutants by converting them into carbon dioxide, water and smaller biodegradable compounds.

T1B STP controls the formation of excessive organic sludge by rapidly degrading it. It also improves the settling rate of activated sludge for filtration and settling processes.

Longer retention time although allows for a more thorough treatment, it also increases the risk of odours and the growth of harmful organisms. T1B STP specializes in controlling filamentous bacterial growth in sewage management and also eliminates odours.

With its many beneficial properties like the high potency of reducing BOD, COD and ammonia, improving conditions for better floc formations, and controlling sludge bulking and excess foaming T1B STP applications are many. T1B STP microbial formulation can be used in any sewage treatment plant, sewer lines, STP pumping stations, municipal waste disposals and even for compact plants in housing complexes, hospitals etc.

T1B STP | Bacteria Consortia For Sewage Treatment Plant (STP) – For Sewage Odor Control, Organic Sludge Reduction, Sludge Bioremediation

STP Odour Control – Odour Reduction In STP – Cheap Bioproducts For STP – Powder Bioproduct For STP – liquid Bioproduct For STP – Bio Culture For Sewage Treatment Plant (STP) – Powder Stp Sewage Treatment Plant Bio Culture – Bio STP – STP Culture – STP Bio Culture – Sewage Treatment Plant Chemicals – Biological Culture For Sewage Treatment Plant – Sewage Treatment Plant – Sewage Treatment – Biocultures For Sewage – Sewage Biocultures – Sewage Bacteria – Microbial Product For Sewage Treatment – Sewage Bioremediation – Odour Control In Sewage – STP Odour Control – Sludge Reduction – Reuse Of Sewage – Grey Water Treatment – Black Water Treatment – Sludge Reduction – Electricity Savings – Chemical For Sewage Treatment – Urine Treatment – FOG In Sewage – Bio Treatment Of Sewage – Sewage Sludge – Activated Sludge – Microbial Consortia – Microbial Inoculants – Bioreactor – Anaerobic Digestion – Nutrient Removal – Ammonia Oxidation – Denitrification – Phosphorus Removal – Microbial Enzymes – Biosurfactants – Aerobic Bacteria – Anaerobic Bacteria – Facultative Bacteria – Bio Enzyme – Enzymes – COD Removal – BOD Removal – Ammoniacal Nitrogen Removal – Sludge Degradation – Removing Oils, Fats And Grease – Reduces Aeration Requirement – Enzyme Producing Microbes – Enzyme Producing bacteria – Naturally Occurring Microbes – Bio Culture Bacteria Solutions – Enzyme Solutions – Bio Enhancer – Microbial Inoculum – Probiotic Bacteria – Municipal Waste Water Treatment – Bioculture Product – MLSS Development – Eco-Friendly Method Of Sewage Treatment

Scan the code