Restart and Commissioning of ETP of a Petrochemical Industry

Introduction: 

This petrochemical industry in West Bengal has a full-fledged Activated Sludge Process (ASP) system with two aeration tanks in parallel. This Effluent Treatment Plant (ETP) experienced shock loads and frequent upsets due to multiple streams and high Polycyclic Aromatic Hydrocarbons (PAH) in the effluent. Maintenance of a good biomass in the aeration tanks along with sustainability in shock loads was a challenge as the upsets were highly shock-inducing.

ETP Details:

The industry had primary treatment, biological treatment, and then a tertiary treatment.

Previous Capacity

Flow (current) 450 KLD
Flow (design) 450 KLD
Type of process ASP (parallel tanks)
Capacity of AT-1 350 KL
Capacity of AT-2 350 KL
Retention Time 37.33 hours(combined)

Challenges: 

Parameters (PPM) Avg. Inlet parameters  Avg. Outlet parameters (MBR Outlet)
COD 4000-8000 3200-6000
BOD 2600-5800 1200-3800
TDS 7000 1000
PAH 1450 1000

Operational Challenges:

  • The primary treatment was working at 5% efficiency in terms of COD reduction.
  • The biological treatment worked at an average 20-25% efficiency in terms of COD reduction.
  • They were struggling to control the higher PAH levels, and it was inducing shock loads, as explained earlier.

The Approach:

The industry partnered with us to commission their Upflow Anaerobic Sludge Blanket (UASB) and Aeration Tank with increased capacity and restart the ETP at its full capacity in terms of hydraulic load.

We adopted a 3D approach that included:

Research/Scrutiny:

Our team visited their facility to go through the process of the new Effluent Treatment Plant (ETP) and to scrutinize the value-addition factors.

Analysis:

We analyzed the 3-month cumulative data of their ETP to see trends in the inlet-outlet parameters’ variations and the permutation combinations related to it.

Innovation:

After the research and analysis, our team curated customized products and their dosing schedules with formulation, keeping in mind the plan of action to get the desired results.

This process is called bioaugmentation.

Desired Outcomes:

  • Development of strong biology to withstand shock loads and prevent upsets.
  • Making ETP more efficient regarding COD/BOD and PAH degradation.
  • Reduction in FOG (Fats, Oils, and Grease).

Execution:

Our team selected the product:

For Aeration Tank:

  1. T1B Aerobio: consists of blends of several strains of aerobic and facultative microorganisms, usually bacteria, along with key trace elements on a complex inert media.

For Oil/Grease Trap:

     2.T1B FOG BioBloc:

  

Our plan of action included:

  • The addition of T1B Aerobio was also done every day with a reduction in the dosing every 10 days.
  • A total of 150 kgs of T1B Aerobio was used for 60 days of treatment.
  • T1B FOG BioBloc was placed at the O/G trap for FOG reduction.
  • 4 blocks of T1B FOG BioBloc were used for 60 days.

Results:

Parameters

Parameters (PPM) Avg. Inlet parameters  Avg. Outlet parameters (secondary clarifier outlet)
COD 4000-8000 1200-2300
BOD 2600-5800 500-850
TDS 7000 1000
PAH 1450 321

The implementation of the bioaugmentation program resulted in significant improvements in the performance of biological units in their Wastewater Treatment Plant (WWTP):

  • The COD/BOD degrading efficiency increased from 20% to 70% in the biological system.
  • PAH was also getting degraded up to 77%.
  • MLSS (Mixed Liquor Suspended Solids): MLVSS (Mixed Liquor Volatile Suspended Solids) ratio was optimized.
  • Biomass in the ASP system displayed great stability even during shock load situations.

This sustainable wastewater treatment approach has helped the industry optimize effluent quality, enhance microbial community stability, and ensure compliance with environmental standards.

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Challenges faced in Adhesive effluent treatment with shock load
Adhesive Effluent Treatment with Shock Load Challenges

Introduction:

The adhesive effluent treatment from a manufacturing industry contains a variety of pollutants, depending on the type of adhesives being manufactured (e.g., water-based adhesives, solvent-based adhesives, hot-melt adhesives, or reactive adhesives). The main pollutants typically found in industrial wastewater treatment for the adhesive industry include:

An adhesive manufacturing plant in Pune with an overall capacity 750 KLD effluent treatment plant (ETP) faced issues due to the presence of certain contaminants such as:

  • VOCs (Volatile Organic Compounds): Benzene, Ethyl Acetate, Acetone, etc. (from solvent-based adhesives).
  • Resins & Polymers: Acrylic resins, epoxy resins, polyurethanes, or other polymeric residues.
  • Unreacted Monomers: Styrene, vinyl acetate, acrylates, formaldehyde, etc., which are organic but difficult-to-degrade pollutants contributing to outlet contamination and lower efficiency in COD removal along with imposing shock loads.

 

Plant Details:

Flow Rate 750 KLD
Inlet COD:  8000-1000 ppm
Inlet TDS 6000 PPM
Aeration Tank 1 Capacity 800 KL
Aeration Tank 2 Capacity 350 KL
COD reduction efficiency of secondary system 40%-50%

 

Research and Analysis:

The plant’s Effluent Treatment Plant (ETP) was comprehensively evaluated to diagnose wastewater treatment challenges through site visits. Key issues identified were:

  • High COD levels caused by organic pollutants and chemical residues.
  • Frequent upsets due to shock loads from multiple industrial effluent streams.
  • Poor microbial performance in the biological treatment system.
  • Unsustainability and low MLVSS (Mixed Liquor Volatile Suspended Solids), leading to inefficient biodegradation of industrial effluents.

Innovation:

T1B Aerobio: Enhancing Biological Treatment Performance

T1B Aerobio is a specially formulated biological treatment solution powered with 76+ robust bacterial strains designed to degrade complex organic compounds in adhesive industry wastewater. Its high-performance microbial strains secrete enzymes that efficiently break down tough-to-degrade contaminants that indigenous microbes fail to degrade.

Execution:

Plant Optimization:

  • Adjusted Return Activated Sludge (RAS) and Waste Activated Sludge (WAS) to enhance the secondary biological treatment system efficiency.

Dosing Regime:

A 60-day microbial dosing schedule was implemented:

  • Phase 1 (Days 1-30): High initial dose to establish a dominant biological culture for effective COD degradation.
  • Phase 2 (Days 31-60): Maintenance dosing to sustain color removal and COD reduction.

Monitoring Parameters:

  • COD and BOD (Biochemical Oxygen Demand) levels.
  • Sludge Volume Index (SVI) and sludge settling characteristics.

 

Observations:

The addition of T1B Aerobio resulted in significant improvements in adhesive effluent treatment. Key observations are summarized below:

Parameter Day 1 Day 15 Day 30 Day 45 Day 60
COD (ppm) 10,000 7,500 4,700 2,500 945
BOD (ppm) 4,300 2,800 1,200 850 400
SVI (mL/g) 20 25 32 35 40

Results:

  • COD Reduction: Achieved a 91% reduction in COD levels by Day 60, ensuring compliance with environmental discharge standards.
  • BOD Reduction: Achieved a 90% reduction in BOD levels, meeting wastewater discharge norms.
  • Improved Sludge Settling: Optimized Sludge Volume Index (SVI) values, leading to better sludge compaction and reduced carryover.
  • Shock Load Management: Frequent ETP upsets were effectively controlled.

Conclusion:

The application of T1B Aerobio significantly improved the performance of the adhesive industry’s effluent treatment plant (ETP). Enhanced biological treatment facilitated the degradation of hard-to-degrade organic pollutants, stabilized microbial activity, and maintained ETP efficiency under shock load conditions.

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

 

Scan the code