Bioremediation of Aldehyde-Rich Wastewater from a Pharmaceutical Manufacturing Unit
Bioremediation of Aldehyde-Rich Wastewater from a Pharmaceutical Manufacturing Unit
Background

A leading pharmaceutical company situated in Madhya Pradesh in India was facing challenges in treating its aldehyde-laden wastewater, particularly with glutaraldehyde and formaldehyde content.Bioremediation of aldehyde-rich wastewater emerged as a sustainable and effective solution to this issue. Contact Us to learn how we can transform your wastewater challenges into sustainable solutions.

These compounds, used in drug synthesis and as disinfectants, were found to be:

  • Inhibiting microbial activity in their conventional Activated Sludge Process (ASP), a common biological wastewater treatment method.
  • Causing non-compliance with regulatory COD/BOD limits—critical benchmarks in any sewage water treatment process.
  • Producing a persistent pungent odor at the ETP outlet, calling for odour control in wastewater treatment.
ETP details:

The industry had primary treatment, biological treatment, and then a tertiary treatment.

Flow (current)900 KLD
Type of processASP
No. of aeration tanks2
Capacity of aeration tanks3180 KL and 2840 KL
Challenges: 
Parameters Avg. Inlet parameters(PPM)Avg. Outlet parameters(PPM)
COD120001500
BOD4500880-500
TDS40001200
Formaldehyde200145
Gluteraldehyde210182
Problem Statement:

Despite having a full-fledged ETP (Equalization → Primary → ASP → Clarifier), the system could not consistently bring down aldehyde levels due to their toxicity to standard microbial consortia. The system experienced:

  • Foaming and poor settling in the aeration tank.
  • Reduced BOD removal efficiency.
  • Increased sludge bulking and filamentous growth—issues typical in inefficient wastewater filtration and sludge management systems.
Objective:

To implement a cost-effective, eco-friendly bioremediation strategy that:

  1. Enhances degradation of formaldehyde and glutaraldehyde.
  2. Restores biological treatment efficiency.
  3. Achieves compliance with CPCB norms.
Solution: Bioaugmentation-Based Bioremediation
Step 1: Selection of Microbial Culture/Bioculture

A customized bio-culture T1B Aerobio blend was developed, containing aldehyde-degrading strains of:

  • Pseudomonas putida
  • Bacillus subtilis
  • Rhodococcus sp.

These microbes had been lab-tested for their aldehyde tolerance and metabolic capabilities..aerobio from t1b

Step 2: Dosing Plan in Full-Scale ETP
  • Initial Loading dose: For 1st 30 days to develop the population of bacteria and generate biomass 
  • Maintenance dose: For the next days and on, to maintain the population of biomass generated.
  • Nutrient balancing (C:N:P = 100:5:1) to promote growth.
Step 3: Acclimatization Phase (2 Days)
  • The culture was activated for two days separately for acclimatization.

Monitored DO, pH, and ORP to ensure a stable environment.

Results:

After 60 days of Bioculture addition/Bioremediation:

Parameters Avg. Inlet parameters(PPM)Avg. Outlet parameters(PPM)
COD12000500
BOD4500280
TDS40001200
Formaldehyde200>15
Gluteraldehyde210>30

60 days of Bioculture addition/ bioremediation of aldehyde-rich wastewater

60 days of Bioculture addition/ bioremediation of aldehyde-rich wastewater

Benefits Observed

Rapid degradation of aldehydes without secondary pollutants
Stabilized biomass and improved MLSS/MLVSS ratio
Significant reduction in foaming and sludge bulking
Odor control and improved air quality near the aeration tank
Regulatory compliance achieved within 4 weeks

Conclusion

Bioremediation of aldehyde rich wastewater has proven to be a sustainable and economical solution for treating contaminated wastewater. With careful acclimatization, dosing, and nutrient balancing, the ETP was restored to optimal performance without requiring major infrastructure changes.This highlights the power of using the right wastewater treatment products and techniques to improve residential wastewater treatment systems and eco sewage treatment plants alike.

📩 Contact Us to explore how our waste water engineering solutions can support your sewage treatment plant maintenance needs.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Scan the code