Bioculture-Based Treatment of Recalcitrant COD
Bioculture-Based Treatment of Recalcitrant COD in Pharmaceutical Effluents
Introduction

It often happens that an Effluent Treatment Plant’s (ETP) chemical oxygen demand (COD) degrading efficiency becomes stagnant at a certain point. Despite trying multiple wastewater treatment methods and technologies, breaking this threshold remains a challenge. The real culprit behind such scenarios is the presence of recalcitrant COD in pharma effluents.

Pharmaceutical wastewater, in particular, presents high COD and BOD challenges due to persistent Active Pharmaceutical Ingredients (APIs), solvents, and excipients that resist biological treatment. Conventional systems often struggle to meet regulatory compliance, making microbial culture-based treatment a promising alternative. This blog explores treatment efficiency, plant configurations, cost analysis, and pilot project insights for implementing enzyme-based bioculture in pharma effluent treatment.

To learn more about effective solutions for reduction of recalcitrant COD reduction in Pharmaceutical Effluents, feel free to contact us.

1. Understanding Bioculture-Based Treatment for Pharma Effluent
How Biocultures Work?

Microbial culture is a specialized microbial consortia capable of degrading recalcitrant COD through enzymatic breakdown. They work via:

Advanced oxidation processes – Breaks complex organic compounds into biodegradable intermediates. 

Co-Metabolism – Uses an additional carbon source to enhance pollutant degradation. 

Biofilm Formation – Protects microbes from toxic compounds and improves stability in treatment systems.

Targeted Degradation of Recalcitrant COD Components
Pharma CompoundCommon SourceMicrobial Strains UsedEnzymes InvolvedDegradation Pathway
ParacetamolPainkillersPseudomonas putida, Bacillus subtilisAmidase, LaccaseAmide hydrolysis to p-aminophenol, oxidation
Ibuprofen & DiclofenacNSAIDsSphingomonas sp., Rhodococcus sp.Dioxygenases, HydrolasesHydroxylation & carboxylation of aromatic rings
Ciprofloxacin & OfloxacinAntibioticsAcinetobacter sp., Pseudomonas aeruginosaMonooxygenasesQuinoline ring cleavage
Erythromycin & AzithromycinMacrolide AntibioticsBacillus licheniformisEsterase, OxidaseEster bond hydrolysis, oxidation
Estradiol & ProgesteroneHormonesComamonas testosteroni, Mycobacterium sp.Hydroxylase, DehydrogenaseSteroid ring hydroxylation
ChloramphenicolAntibioticsPseudomonas fluorescensReductase, HydrolaseNitro group hydrolysis
Azo Dyes (Erythrosine, Tartrazine)Coloring AgentsPseudomonas aeruginosa, Shewanella oneidensisAzoreductaseAzo bond cleavage
Nonylphenols, PEGsSurfactantsSphingomonas sp., Pseudomonas sp.Oxidase, β-OxidaseOxidation of alkyl chains
2. Treatment Systems Configurations Using Biocultures
Plant Design for Pharma Wastewater Treatment Process
Stage 1: Pre-Treatment (Equalization & Primary Treatment)

Objective: Remove suspended solids, neutralize pH, and reduce initial COD load.

Equalization Tank – Balances flow & pH (6.5–7.5).
Coagulation-Flocculation – Removes large particulates (e.g., PAC or FeCl₃).
Screening & Oil Removal – Eliminates large solids and oil residues.

Stage 2: Advanced Biological Treatment with Microbial Culture

✅ Moving Bed Biofilm Reactor (MBBR) or Sequential Batch Reactor (SBR) – Bioculture for STP wastewater treatment

✅ Optimized Microbial Seeding – Customised culture for targeted degradation. 

✅ Retention Time: 24–36 hours for reaction time.

Stage 3: Advanced Oxidation Processes & Membrane Filtration 

Fenton’s Process / Ozonation – Further breaks down recalcitrant COD

Membrane Bioreactor (MBR) or Reverse Osmosis (RO) – Final purification.

Stage 4: Sludge Management & Water Reuse

✅ Dewatering & Sludge Handling – Using filter press or centrifugation. 

✅ Effluent Recycling – Treated water reused for lagoons wastewater treatment.

3. Pilot Project Insights: Real-World Applications
Case Study 1: Antibiotic Manufacturing Effluent Treatment

📍 Location: India | COD Level: 10,000 mg/L

✅ Solution: Bioculture companies for wastewater treatment (Acinetobacter sp. & Pseudomonas sp. in MBBR). 

✅ Result:

  • COD reduced by 85% (Final COD: <500 mg/L).
  • Reduced toxicity – No microbial inhibition observed.
Case Study 2: NSAID (Ibuprofen & Diclofenac) Removal

📍 Location: Europe | COD Level: 8000 mg/L
✅ Solution: SBR + Microbial Culture Companies in India (Rhodococcus + Sphingomonas). 

✅ Result:

  • COD reduced by 90% (Final COD < 250 mg/L).
  • High removal of Ibuprofen (96%) & Diclofenac (89%).
4. Cost Analysis of Bioculture-Based Treatment
Cost ComponentEstimated Cost (₹/m³)Description
Bioculture Seeding₹3–6Initial inoculation for microbial growth
Reactor Operation (MBBR/SBR)₹15–20Aeration, energy, and microbial maintenance
AOP (Ozonation/Fenton’s Process)₹8–12Advanced oxidation for recalcitrant organics
Membrane Treatment (RO/MBR)₹12–18Filtration and final polishing
Total Treatment Cost₹38–56 per m³Cost-effective compared to ZLD (₹80-100 per m³)
Key Takeaways:
  • Bioculture-based treatment reduces overall cost by 30–50% compared to purely chemical or ZLD systems.
  • Lower sludge production compared to coagulation-based treatments.
  • Faster startup time (2–3 weeks) compared to conventional activated sludge.
Conclusion: The Future of Biocultures in Pharma Effluent Treatment

🔹 Bioremediation companies in India offer a sustainable & cost-effective solution for treating recalcitrant COD in pharma effluents.
🔹 Bioculture companies in India can provide enzyme-based bioculture tailored for specific APIs, ensuring high pollutant removal.
🔹  Integrating biocultures with advanced oxidation & MBBR/SBR technology enhances efficiency & meets regulatory standards.

If you’re looking for expert guidance or customized solutions for your ETP, our team is here to help!

Contact us today for a consultation or to learn more about how we can support your effluent treatment needs!

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

effluent treatment plant
Enhancing effluent treatment efficiency at a Nylon tyre cord company

Industry Overview

A leading manufacturer of Nylon Tyre Cord Fabric (NTCF) and Nylon Filament Yarn (NFY) in India. The manufacturing process generates waste water containing high BOD COD and complex organic pollutants, requiring an advanced effluent treatment system or compliance with environmental norms. 

To learn how our solutions can help optimize wastewater management and ensure regulatory adherence, contact us today.

ETP Overview

 The company operates a 650 KLD effluent treatment plant (ETP) with the following aeration tank capacities:

  • Aeration Tank 1: 450 KL
  • Aeration Tank 2: 800 KL
  • Aeration Tank 3: 400 KL

The wastewater treatment system includes equalization, primary treatment, biological treatment (aeration tanks), secondary clarification, and waste management through sludge treatment.

Challenges Faced by the ETP

  1. Frequent Upsets Due to Multiple Waste Water Streams 

The industry has multiple waste water streams, including:

  • ✅ Process wastewater treatment from Nylon production – Contains high COD, phenols, and recalcitrant organics.
  • Dye and finishing waste water – High in sulfates, surfactants, and residual dyes.
  • Boiler & cooling tower blowdowns – High in TDS and scaling compounds.

These varied streams led to fluctuations in pH, organic load, and microbial inhibition, making biological treatment inconsistent.

  1. Filamentous Bacteria Growth Leading to Bulking & Poor Settling 

The aeration tanks experienced frequent filamentous bacterial overgrowth, leading to:

  • Sludge bulking – Poor settleability in the secondary clarifier.
  • ❌ Reduced oxygen transferFilamentous microbes formed a mat, lowering aeration efficiency.
  • ❌ High MLSS but poor COD removal – Inefficient microbial metabolism caused high effluent COD.
  1. High COD and BOD in Final Discharge
    • COD levels >1200 mg/L after biological treatment (well above discharge limits).
    • BOD levels exceeded 250 mg/L, indicating poor organic degradation.
    • Fluctuations in ammonia and nitrate levels due to microbial stress.

Solution: Implementation of Our Customized Bioculture for Effluent Treatment System

To address these challenges, a customized culture solution was implemented in three stages:

  1. Bioaugmentation with Specialized Microbial Strains We introduced a high-performance microbial culture consortia designed to degrade recalcitrant organics and control filamentous growth.
Pollutant / IssueTargeted Bioculture StrainsMode of Action
High COD from dyes & finishingPseudomonas putida, Bacillus subtilisProduces oxidative enzymes to break down complex organics.
Phenolic compounds & nylon by-productsAcinetobacter sp., Comamonas testosteroniUses phenol hydroxylase to degrade toxic aromatics.
Surfactants & residual oilSphingomonas sp., Rhodococcus sp.Breaks down surfactants & hydrocarbons.
Filamentous bacterial overgrowthBacillus licheniformis, Nitrosomonas sp.Competes with filamentous microbes & improves sludge settling.
Ammonia & nitrate fluctuationsNitrobacter sp., Paracoccus denitrificansEnhances nitrification & denitrification for ammonia removal.

Dosage Strategy:

  • First 10 days: Shock dosing of bioculture for STP wastewater treatment (10 ppm/day) to quickly establish microbial dominance.
  • Post-10 days: Maintenance dosing (2–3 ppm/day) for stable microbial activity.
  1. Process Optimization in Aeration Tanks
    • Dissolved Oxygen (DO) Optimization: Increased DO from 1.5 mg/L to 2.5 mg/L by fine-tuning aeration rates.
    • MLSS & SRT Adjustments: Maintained MLSS at 3500–4000 mg/L for optimum microbial growth.
    • Sludge Recycle Ratio: Adjusted to 60% return rate to prevent sludge bulking.
  1. Enhanced Settling & Clarifier Performance
    • The addition of floc-forming microbes (Bacillus sp.) improved sludge compactness, reducing SV30 from 200 ml/L to 80 ml/L.
    • Sludge volume index (SVI) improved from >250 mL/g to <120 mL/g, indicating better sludge settleability.

Results Achieved

ParameterBefore TreatmentAfter Bioculture ImplementationReduction %
COD in Effluent1200 mg/L180 mg/L85%
BOD in Effluent250 mg/L35 mg/L86%
Phenol Concentration45 mg/L5 mg/L88%
Filamentous Bacteria IssueFrequent sludge bulkingFully controlled
Dissolved Oxygen (DO)1.5 mg/L2.5 mg/L
Sludge Settling (SVI)>250 mL/g<120 mL/g52% Improvement

Key Benefits for the Industry 

Consistent Compliance with Environmental Norms

  • Effluent quality now meets CPCB discharge limits (COD < 250 mg/L, BOD < 30 mg/L).

Reduced Operating Costs

  • Lower aeration energy costs due to improved oxygen transfer efficiency.
  • Reduced chemical usage (e.g., less need for coagulants & antifoam).

Stable ETP Operation with No More Upsets

  • Bioculture created a robust microbial ecosystem that handled stream variations effectively.

Improved Sludge Management

  • Better settling resulted in less sludge disposal & reduced maintenance costs.

Conclusion 

The implementation of our customized bioculture solution successfully transformed the effluent treatment system at Century Enka Ltd., Bharuch. By addressing COD BOD problems, filamentous bacterial issues, and inefficient aeration, the plant achieved stable treatment performance, reduced operational costs, and regulatory compliance

Are you looking for expert solutions in effluent treatment and sustainable wastewater management?

Contact us to know more about how our customized bioculture solutions can help!

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Scan the code