The Importance of Nitrogen in Wastewater Treatment and Its Environmental Impact

The importance of nitrogen goes hand in hand with its ill effects on the environment and organisms specifically humans as the heavy accumulation of the same in water bodies leads to hazardous effects such as eutrophication having direct impact on human health.

The major contributors to this nitrogen accumulation in water bodies are industries in the form of ammoniacal nitrogen. The pollution control bodies such as NGT and CPCB are very stringent about the ammoniacal nitrogen discharge through the effluent.

What is Nitrification and Denitrification in Wastewater Treatment?

Understanding Nitrification

Nitrification is a two-step aerobic process where ammonia (NH3) is converted into nitrate (NO3) through the action of specialized bacteria. This process occurs naturally in soil and water but is crucial in wastewater treatment to prevent ammonia toxicity and eutrophication in aquatic environments.

1. Ammonia Oxidation: The first step involves the conversion of ammonia to nitrite (NO2) by ammonia-oxidizing bacteria (AOB) such as Nitrosomonas.

NH3 ​+O2  ​→ NO2+ 3H+ + 2e

2. Nitrite Oxidation: The second step involves the conversion of nitrite to nitrate by nitrite-oxidizing bacteria (NOB) such as Nitrobacter.

NO2 ​ + 1/2​O2​ → NO3

Understanding Denitrification

Denitrification is an anaerobic process where nitrate is reduced to nitrogen gas (N2), which is then released into the atmosphere. This process helps in the removal of excess nitrogen from wastewater, thus preventing nutrient pollution.

  1. Nitrate Reduction: Nitrate is first reduced to nitrite.

NO3 ​→ NO2

  1. Nitrite Reduction: Nitrite is further reduced to nitric oxide (NO), nitrous oxide (N2O), and finally nitrogen gas.

NO2​ → NO → N2​O → N2

 The Role of Bioremediation in Wastewater Treatment:

Bioremediation leverages natural or engineered biological processes to degrade pollutants. In the context of nitrification and denitrification, bioremediation uses microbial communities to enhance nitrogen removal efficiently.

  1. Bioaugmentation: This involves the addition of specific strains of nitrifying and denitrifying bacteria to wastewater treatment systems. These microorganisms are selected for their efficiency in nitrogen transformation processes.
  • Nitrosomonas europaea and Nitrobacter winogradskyi are common bioaugmentation agents for nitrification.
  • Pseudomonas and Paracoccus species are effective for denitrification.
  1. Biostimulation: This approach involves optimizing the environmental conditions to favor the growth and activity of indigenous nitrifying and denitrifying bacteria. Parameters such as pH, temperature, oxygen levels, and nutrient availability are carefully controlled.
  2. Immobilization Techniques: Microorganisms can be immobilized on various carriers such as activated carbon, biochar, or synthetic polymers to enhance their stability and activity. This method can significantly improve the efficiency of nitrification and denitrification processes by providing a conducive environment for microbial growth and activity.

Ammoniacal nitrogen control highly depends on the microbes responsible for nitrification and denitrification as well as dissolved oxygen. While in the case of industries specific anoxic systems are designed to control the ammonia in the effluent.

 Anoxic Systems in Wastewater Treatment?

The anoxic system is designed to follow the nitrifying and denitrifying process.

  1. Nitrifying Tank: – It consists of an oxygen source specifically aerators to induce dissolved oxygen in the effluent, which nitrifying bacteria utilize to convert ammonia to nitrite.
  2. Denitrifying Tank: – This tank is devoid of any oxygen sources to induce denitrification where nitrite turns into nitrate with the help of denitrifying bacteria.
  1. Canal or Stream: – Here the wastewater is allowed to flow through a canal or a stream uniformly which allows the nitrogen gas to escape which is ultimately the degradation of bacteria.

The anoxic system is ideally amalgamated with popular and prominent wastewater treatment types to achieve the eradication of NH3-N. By understanding and implementing these processes, industries can significantly reduce their impact on the environment and comply with stringent regulations on ammoniacal nitrogen discharge.

Curious to know more? Get a FREE sample of our bio cultures for effluent treatment or schedule a 1:1 consultation with our technical experts.

Aerobio – Microbial Cultures, Bio Product, Bacteria with Enzymes, Bacterial Culture, Digester Treatment

Since aerobic digestion is an integral and important step in wastewater treatment, the health status of activated sludge becomes a fundamental concern for any industrial WWTP or ETP management.

T1B Aerobio is a trustworthy aid to maintain the functionality and productiveness of any wastewater treatment process. T1B Aerobio is tenacious in breaking down organic matter and reducing the biological oxygen demand (BOD) or chemical oxygen demand (COD) levels in wastewater.

With its exceptional tendency to remain conducive even with fluctuating temperature ranges, unstable pH levels, and escalated levels of total dissolved solids or TDS, the T1B Aerobio is a quintessential addition to a wastewater treatment process.

Recalcitrant compounds are hard to degrade chemical substances. Adding T1B Aerobio in sludge waste fortifies the degradation of these harmful compounds. T1B Aerobio is also a robust bioproduct that decomposes xenobiotic compounds effectively. Use of T1B Aerobio will definitely improve the efficiency of various biological process and units like, ASP, MBR, MBBR, SBR, RBC, Trickling Filter. etc. It works under suspension mode as well as attached mode systems.

T1B Aerobio | Microbiome Solution For Aerobic Digestion – Efficient For Reduction Of BOD and COD in wastewater for reclacitrant and xenobiotic compounds

Aerobic Microbial Cultures – Aerobic Bio Product – Aerobic Bacteria With Enzymes – Aerobic Bacterial Cultures – Aerobic Digester Treatment – Wastewater Bioremediation – Bioremediation – Bioaugmentation – Bio Product – High COD/BOD – High Ammoniacal Nitrogen – High TDS – Tough To Biodegrade Efflunet – Xenobiotic Compounds – Reclacitrants – Oil & Grease – Activated Sludge Process – ASP – Microbial Process – Oxygenation – Carbon Dioxide – Nutrient Removal – Aerobic Microorganisms – Sludge Reduction – Secondary Treatment – Respiration – Oxidation – Air Supply – Energy Efficiency – Carbon Footprint – Environmental Benefits – BOD (Biochemical Oxygen Demand) – COD (Chemical Oxygen Demand) – Aeration Tank – Activated Sludge – Activated Sludge Process – SBR (Sequential Batch Reactor) Process – MBR (Membrane BioReactor) Process – MBBR (Moving Bed Biofilm Reactor) process – RBC (Rotating Biological Contactor) Process – MBR-IFAS (Integrated Fixed-film Activated Sludge) Process – ASP (Aeration Stabilization Process) – Extended Aeration Process – Oxidation Ditch Process – Trickling Filter Process – High-Rate Trickling Filter Process – Submerged Aerated Filter Process – Membrane Aerated Biofilm Reactor (MABR) – Biofilm Reactors – Effective Microbes – Effective Microorganisms – High Strength CFU Per Gram – Industrial Wastewater Treatment – ETP – Efflunet Treatment Plant – CETP – Common Effluent Treatment Plant – Improve MLSS – Reduce Aeration – Plant Stability – Enhance Nitrogen And Phosphorus Removal – Commissioning Time of ETP – Rapid Growth Of MLSS and MLVSS – Shock load Stabilization – Overall Cost Of Operation – Faster Commissioning – Reduce COD BOD Ammoniacal Nitrogen – Improved Setteling – Colour Reduction – Aromatic Compounds Cellulose Proteins lignin lipids – High TDS Tolerant – Food Industry Effluent – Beverage Industry Wastewater – Dairy Industry Effluent – Meat Processing Industry – Paper Industry Effluent – Pharmaceutical Industry Effluent – Effluent From Textile Units – Effluent From Chemical Manufacturing Units – Dyes and Colorants Effluent – Detergents Effluent – Active Bioremediation

Scan the code