Sludge Bulking vs. Sludge Settling Ways to improve wastewater treatment in India
Sludge Bulking vs Settling: Biotech Companies in India

Our MLSS is quite high, but we are not getting enough settling. “ or “Our biomass development is very good as our MLSS is high, but we have very little BOD/COD reduction”. these statements are often given by EHS managers. However, the concept of MLSS is completely misunderstood; it’s never the quantity of MLSS, it’s always the quality of MLSS. The settling of sludge and BOD reduction always correspond with how good the MLSS is, and not how much it is.

This blog intricately explains the difference between sludge bulking and sludge settling, and which factors are necessary to look out for.

Sludge Settling vs Sludge Bulking:

With the growing awareness of operational efficiency, several biotech companies in India are now addressing sludge bulking challenges through microbial innovation and advanced diagnostics.

Healthy Sludge Settling:

In a well-operating secondary clarifier, biomass flocs are compact, dense, and settle rapidly. The supernatant above appears clear, and the sludge blanket remains stable.

Sludge Bulking:

Here, the sludge appears fluffy, loose, and struggles to compact at the bottom. The supernatant turns turbid, and sludge blankets may rise or disperse.

ParameterHealthy SettlingSludge Bulking
SVI (Sludge Volume Index)80–120 mL/g>150 mL/g
Sludge appearanceDense, compact flocsLoose, filamentous flocs
SupernatantClearTurbid
Settling time20–30 mins>45 mins
CauseBalanced systemFilamentous overgrowth, F/M imbalance
Why Good MLSS ≠ Good Settling

Operators often celebrate high MLSS as a sign of strong microbial population. But MLSS is a mass reading-It doesn’t distinguish between healthy floc-formers and problem-causing filamentous organisms.

“ Think of it like body weight: Two individuals weigh the same, but one may be with lean muscle, the other with excessive fat.

In bulking scenarios, the bulk of MLSS is held together by filamentous bacteria-these long, thread-like organisms stretch out of flocs, creating open, web-like structures that trap water and resist compaction.

Reliable biocultures companies have been instrumental in developing floc-forming microbial strains specifically tailored for bulking control.

What Causes Sludge Bulking?
  1. Filamentous Bacteria Overgrowth

Common species: Type 021N, Sphaerotilus, Microthrix parvicella, Thiothrix

These bacteria thrive under specific conditions such as:

Low DO (<1.0 mg/l) – especially at floc centers.

High F/M ratios – excess food leads to dominance of fast-growing filaments

Nutrient Imbalance– N and P deficiency affect floc formation

Surfactants and FOG – common in food, dairy, and textile industries

Hydraulic surges – shock loading from upstream process

Leading microbial companies in India are providing industry-specific solutions for complex ETP issues, helping clients achieve consistent results in variable conditions.

 

  1. F/M Ratio Imbalance

Too much organic load relative to MLSS results in excessive microbial growth, and filamentous bacteria often outcompete floc-formers.

Ideal F/M ratio: 0.2-0.5 kg BOD/kg MLSS/day

Bulking is more likely when F/M > 0.6 or < 0.1, especially during inconsistent feed conditions.

  1. pH and Toxic Shocks

Sudden changes in pH (below 6.5 or above 8.5) , or toxic loads (solvents, phenols, metals) can kill floc-formers and allow filaments to dominate during regrowth. However, Solutions like those from Team One Biotech, a known player among bioculture for ETP STP plant manufacturers, are reshaping how industries manage MLSS health and sludge behavior.

 

Decoding SVI and other key Indicators

Sludge Volume Index (SVI) is the gold standard for assessing settleability.

  • SVI = ( Settled sludge volume in 30 mins, mL/L) / MLSS (g/L)
  • SVI < 100 = Good settling
  • SVI 120–150 → Early warning of bulking
  • SVI > 200 → Severe bulking

Other red flags:

  • Rising sludge in the clarifier
  • Scum layer formation
  • Poor TSS in final discharge
  • Varying DO and pH patterns in aeration tanks
Countermeasures- How to fix Bulking?

In addition to microbial solutions, industrial odor control systems  also play a pivotal role in overall ETP performance and workplace hygiene.

Short-Term Fixes:

  • Chlorination or Peracetic Acid Dosing: Targets filamentous bacteria selectively. Start with 0.5–1 ppm, monitor response.
  • Increase DO Levels: Maintain >2.0 mg/L throughout the aeration tank, especially in large tanks or tanks with dead zones.
  • Sludge Wasting: Reduce SRT (sludge retention time) to control filament growth. Remove excess MLSS.
  • Polymers in Clarifier: For emergency clarity issues, short-term use of cationic polymers can compact sludge.

Long-Term Solutions:

  • Nutrient Balancing: Maintain COD:N:P at approx. 100:5:1. Add urea or DAP if needed.
  • Equalization Tank: Smooth out hydraulic/organic loading rates to the aeration tank.
  • Bioculture Regeneration: Consider seeding with robust floc-forming consortia after bulking episodes.
  • Upgrade Aeration: Switch to fine-bubble diffused aeration systems to improve oxygen transfer.
  • Micronutrient Support: Trace metals like iron, cobalt, and molybdenum support healthy floc formers.

If you’re exploring biocultures for ETP plant manufacturers in India or need effective bacteria solutions for wastewater treatment, Team One Biotech offers proven blends tested across sectors.

Conclusion:

Remember one quote: What settles well, treats well. MLSS and BOD tell only one part of the story – settleability, floc health, and microbial balance complete the picture.

As experts and EHS leaders, we must look beyond the dashboard. A 3500 mg/L MLSS might impress, but if your sludge floats and supernatant clouds, your ETP is already sending you a warning.

Looking for a trusted waste water treatment company to resolve sludge settling problems? Contact Team One Biotech today for tailored solutions and microbial consultation.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Thermophilic vs Mesophilic Anaerobic Wastewater Treatment in Industries

The anaerobic treatment of wastewater heavily relies on trends, and unfortunately, adaptation and innovation are very slow in progression compared to rising pollution. 

Although we are all talking about the use of AIs, sensors, IOTs, and efficient hardware, unfortunately, when we consider the industrial wastewater treatment,and broader industrial effluent treatment, we are still stuck at the same processes we were 30 years ago. If you would like to know how we are optimising wastewater treatment methods in diverse environments, feel free to connect with us today.

There needs to be a continuous update at the process level, because 99 % anaerobic plants are mesophilic, i.e, work at a temperature of 30-38 *c. In regards to biocultures for wastewater treatment, the mesophilic treatment is prominent; however, the thermophilic treatment is much more effective and compatible. 

Although it is an uncommon type of ETP water treatment, when it comes to tough-to-degrade effluents such as those with recalcitrant COD, or those with phenols, Aldehydes, etc., the thermophilic microbes treatment can be a game changer in anaerobic digestion.

This blog explores when it makes sense to shift from mesophilic to thermophilic wastewater systems, the practical advantages and challenges, and what it means for plant operators and environmental engineers.

Let us start with the basics:

ParameterMesophilic (30–38°C)Thermophilic (50–60°C)
Microbial growth rateModerateHigh
Biogas yieldModerateHigher (10–25% increase)
Pathogen killLimitedExcellent (>99%)
Energy input requiredLowerHigher
Process stabilityHighSensitive to changes
Start-up timeShorterLonger

The core of the thermophilic system lies in its high-energy fast result mechanism. The hydrolysis process is much faster, resulting in increased metabolic rate and superior pathogen control in biological wastewater treatment.

Issues where thermophilic treatment can be effective:
  1. High-Strength Industrial Wastewaters:

Effluents from industries such as dairies, food processing, slaughterhouses, distilleries and starch industries have higher levels of protiens, lipids, and polysaccharides. Thermophilic systems hydrolyze and degrade these faster, leading to:

  • Higher COD, BOD degrading efficiency.
  • Higher biogas production
  • Shorter HRT (hydraulic retention time)
  • Enhanced treatment of high-strength wastewater

2. Excess Sludge and Biomass Handling Issues:

  • While most mesophilic anaerobic systems produce higher sludge, the thermophilic system produces lower quantities of excess sludge and reduces volatile solids.

3. Strict Pathogen and Odor Control

  • The thermophilic systems give 99% pathogen elimination in STP/Centralized ETPs that handle fecal sludge or pathogen prone waste, which is crucial if:
  • Sludge is reused in agriculture
  • Water is recycled for non-potable uses
  • Especially relevant for optimized wastewater microbiome management

4. Waste Heat:

  • In case of high waste steam, condensate, or cogeneration (CHP) units, the thermal energy can be internally sourced.
  • This supports efficient energy recovery within the plant
Microbial Diversification: Fragility Meets Efficiency

In case of the microbial cultures for wastewater treatment, the thermophilic microbes are completely different from mesophilic ones. Although thermophiles are fewer but are formidable with higher metabolic abilities in the organic waste degradation.

Key Observations:

  • Thermophilic methanogens are more sensitive to pH, VFA spikes, and loading rates.
  • Shock loads (especially of fats, solvents, or salts) can cause faster crashes.
  • Granular sludge formation is more difficult at thermophilic temperatures; biofilms or hybrid systems are better suited.
Biogas enhancement: Quantitative and Qualitative

Thermophilic systems offer 10-25 % higher biogas yield per unit COD removed. More importantly, the methane content is often higher (up to 70-75%) compared to 60-65% in mesophilic digestion.

This makes the Thermophilic process enticing where:

  • On-site biogas is used for power/steam
  • Fossil fuel replacement is a business or ESG goal
  • Carbon credit mechanisms or green energy policies apply
  • Also aligns with zero liquid discharge (ZLD) and carbon neutrality efforts
Operational & Engineering Challenges in sewage treatment process

1. Temperature maintenance:

Temperature maintenance is the key of thermophilic processes, which is altogether challenging both technically and economically, especially in large tanks and in colder environments. 

2. Narrower process Window

Thermophiles work in a smaller range.  Any variation in:

  • pH (ideal: 7.2-7.6)
  • Alkalinity ratio (IA/TA < 0.3 )
  • VFA accumulation

Can lead to performance drops

3. Start-Up Lag

Thermophilic start-up can take 30-60 days, requiring:

  • Seeding with adapted sludge
  • Step-wise temperature ramping
  • High monitoring effort

4. Foaming & Scum

Due to high gas production and surfactant sensitivity, thermophilic systems foam more easily, especially during acidification.

Know the Process, Not just the Temperature:

To be precise, a thermophilic system is not for every ETP (Eluent treatment plant), however, it is effective for any ETP where it is applied. It no doubt is high energy, difficult in operations, and with fragile microbial populations, but it always outpaces mesophilic treatment in COD/BOD control, methane gas production, and cleaner sludge.

et, it’s not a plug-and-play upgrade. You must rethink your sludge management, monitoring protocols, nutrient balancing, and energy integration.

The question isn’t whether thermophilic digestion works—it’s whether your plant is ready to manage the precision and potential that comes with it.”

If you’re designing or upgrading an anaerobic system and want to make it future-proof—especially for energy recovery or zero-liquid discharge (ZLD) ambitions—don’t ignore the thermophilic path. Just walk it carefully.

Partner with Team One Biotech for expert guidance in optimizing your ETP’s aeration and biological treatment processes. Our tailored bioculture solutions and technical expertise ensure enhanced treatment efficiency in anaerobic digestion and wastewater microbiome optimization.

Learn more at www.teamonebiotech.com or reach out at sales@teamonebiotech.com/8855050575

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Sequencing Batch Reactors (SBR) for Wastewater Treatment: A Comprehensive Guide
Introduction

With the growing concerns over sewage treatment plant efficiency and environmental pollution, Sequencing Batch Reactors (SBR) for wastewater treatment have emerged as a vital technology. SBRs are a type of activated sludge process designed for the biological treatment of wastewater through a time-controlled sequence of operations in a single reactor.

This blog delves into the history, working mechanism, current applications, advantages, disadvantages, and methods to enhance the efficiency of SBR systems. If you’re looking for expert guidance on optimizing SBR technology for your wastewater treatment needs, feel free to Contact Us for more information

Origin and History of SBR

The concept of batch reactors in wastewater treatment dates back to the early 1900s when activated sludge processes were first developed. However, the modern SBR system gained prominence in the 1950s and 1960s, when technological advancements enabled automated sequencing controls.

In the 1970s, the Environmental Protection Agency (EPA) in the United States supported research into SBRs, leading to their wider implementation in municipal wastewater treatment plants and industrial wastewater treatment facilities.

What is a Sequencing Batch Reactor (SBR)?

A Sequencing Batch Reactor (SBR) is a fill-and-draw activated sludge system where wastewater is treated in batches. Unlike conventional continuous-flow systems, SBRs operate in time-sequenced cycles within the same tank, eliminating the need for multiple tanks for different stages of treatment.

Key Components of an SBR System
  • Influent tank – Stores incoming wastewater before treatment.
  • SBR reactor tank – Where biological treatment occurs.
  • Decanter – Separates treated water from sludge.
  • Aeration system – Supplies oxygen for microbial activity.
  • Control system – Automates the sequencing of operations.
How SBR Works: The Five Phases

SBR systems operate in distinct cycles, typically consisting of five phases:

Fill
  • Raw wastewater is introduced into the reactor.
  • Mixing begins to distribute the organic load evenly.
  • Aeration may or may not occur, depending on treatment objectives.
React
  • Aeration is provided to promote microbial degradation of organic pollutants.
  • Microorganisms break down biochemical oxygen demand (BOD), nitrogen, and phosphorus.
Settle
  • Aeration stops, allowing solids (sludge) to settle at the bottom.
  • A clear liquid (treated effluent) forms above the settled sludge.
Decant
  • The treated effluent is removed using a decanter, leaving behind the sludge.
Idle
  • The system is temporarily inactive before the next batch starts.
  • Excess sludge may be removed for disposal or further treatment.
Ideal Time Period for Each SBR Cycle

The total cycle time for a Sequencing Batch Reactor (SBR) varies depending on the wastewater characteristics, treatment objectives, and operational conditions. However, a typical SBR cycle lasts 4 to 8 hours, with each phase allocated time as follows:

  • Fill: 0.5 – 2 hours
  • React (Aeration): 1.5 – 4 hours
  • Settle: 0.5 – 1.5 hours
  • Decant: 0.25 – 1 hour
  • Idle: 0.25 – 1 hour

The number of cycles per day typically ranges from 3 to 6 cycles, depending on influent flow rate and treatment requirements.

Sequencing Batch Reactors (SBR) for Wastewater Treatment  tank diagram

Key Parameters to Analyze Before Deciding SBR Cycle Times

Before finalizing the cycle duration, several parameters must be analyzed to ensure efficient treatment and compliance with discharge standards:

  1. Influent Characteristics
  • Biochemical Oxygen Demand (BOD5) – Determines organic load.
  • Chemical Oxygen Demand (COD) – Indicates the total oxidizable pollutants.
  • Total Suspended Solids (TSS) – Affects settling time and sludge formation.
  • Ammonia (NH₃) and Total Nitrogen (TN) – Important for nitrification and denitrification.
  • Phosphorus (P) – Influences biological phosphorus removal processes.
  • pH & Alkalinity – Affects microbial activity and process stability.
  1. Effluent Quality Standards
  • Regulatory discharge limits for BOD, COD, TSS, nitrogen, and phosphorus influence cycle duration.
  • More stringent regulations may require longer aeration and settling times.
  1. Microbial Kinetics and Sludge Characteristics
  • Sludge Volume Index (SVI) – Determines sludge settling efficiency.
  • Mixed Liquor Suspended Solids (MLSS) – Helps optimize aeration duration.
  • F/M Ratio (Food-to-Microorganism ratio) – Ensures balanced microbial growth.
  1. Treatment Objectives
  • If nitrification and denitrification are required, additional aeration and anoxic phases may be needed.
  • For biological phosphorus removal, proper anaerobic-aerobic cycling is essential.
  1. Hydraulic and Organic Load Variability
  • If the influent flow rate or pollutant load varies significantly, a dynamic control strategy should be used.
  • Peak flow conditions may require shorter idle times or multiple cycles per day.
  1. Aeration and Energy Consumption
  • Optimizing aeration time can reduce energy costs while maintaining treatment efficiency.
  • Dissolved Oxygen (DO) control is essential to prevent excess aeration.
Current Usage of SBR Systems

SBR technology is widely used in municipal wastewater treatment and industrial wastewater treatment plants, particularly in scenarios where space constraints or fluctuating flow rates make conventional systems impractical. Common applications include:

  • Small to medium-sized municipal wastewater treatment plants
  • Industrial wastewater treatment (e.g., food processing, pharmaceuticals, textiles)
  • Remote or decentralized wastewater treatment facilities
  • Retrofit solutions for existing plants requiring process upgrades
Advantages of SBR Systems
  • Space Efficiency – Eliminates the need for separate tanks for aeration, settling, and decanting.
  • Flexibility – Easily adjustable to handle varying influent flow rates and loads.
  • Superior Nitrogen & Phosphorus Removal – Optimized for nutrient removal due to controlled aeration and anoxic cycles.
  • Cost-Effective – Lower infrastructure costs as fewer tanks are required.
  • Automated Operation – Modern SBRs are highly automated, reducing manual intervention.
Disadvantages of SBR Systems
  • Requires Skilled Operation – Effective management depends on proper sequencing and automation.
  • Higher Energy ConsumptionAeration and mixing require continuous energy input.
  • Sludge Bulking Issues – Poor settling characteristics can reduce efficiency.
  • Time-Dependent Process – Treatment occurs in cycles, making it less suitable for high, continuous-flow systems.
How to Improve the Efficiency of SBR Systems

To maximize the efficiency of SBR systems, consider the following strategies:

1. Optimizing Cycle Times
  • Adjust the duration of each phase based on influent characteristics and organic load variations.
2. Implementing Real-Time Monitoring
  • Use sensors and SCADA (Supervisory Control and Data Acquisition) systems to monitor dissolved oxygen (DO), pH, and nutrient levels.
3. Improving Aeration Efficiency
  • Employ energy-efficient blowers and fine-bubble diffusers to enhance oxygen transfer.
4. Regular Sludge Management
  • Remove excess sludge at appropriate intervals to prevent bulking and maintain process stability.
5. Utilizing Advanced Bioculture Additives
  • Introducing specialized microbial consortia can enhance biological degradation and improve nutrient removal.
6. Enhancing Decanting Mechanisms
  • Using automated and controlled decanting systems reduces the risk of sludge carryover.
Conclusion

Sequencing Batch Reactors (SBR) represent a highly effective and flexible solution for wastewater treatment. Their ability to treat a wide range of effluents while maintaining a compact footprint makes them a preferred choice for municipal and industrial applications.

However, careful attention must be given to cycle optimization, aeration efficiency, sludge management, and real-time monitoring to achieve optimal performance. By integrating modern automation and biotechnological advancements, SBR systems can continue to evolve as a sustainable wastewater treatment technology.

Are you looking for advanced wastewater treatment solutions, including Sequencing Batch Reactor (SBR) systems?Contact us today to discuss your wastewater treatment needs and find the best solution for your facility!

📧 Email: sales@teamonebiotech.com

🌐 Visit:www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Implementation of SBR systems in CETP
Implementation of SBR System in a CETP with T1B Aerobio Bioculture
Introduction:

The Common Effluent Treatment Plant (CETP) situated in Rajasthan handles effluents from over 40 industries in the RIICO sector. Equipped with SBR system in CETP technology, the system faces difficulty in handling the load of Chemical Oxygen Demand (COD) above 2000 PPM, owing to discharges from textiles and chemicals. The SBR wastewater treatment system, with 4 biological tanks and 4 cycles a day, was struggling with its efficiency in terms of COD reduction, resulting in high outlet COD levels. This excess load was carried over to the Reverse Osmosis (RO) system, leading to membrane damage and increased operational expenses (OPEX).

To explore effective solutions for optimizing wastewater treatment and improving COD reduction efficiency, you can reach out to Team One Biotech

ETP details:

The industry had primary treatment, biological treatment, and then a tertiary treatment.

Flow (current)2 MLD
Type of processSBR
No. of aeration tanks4
Capacity of aeration tanks3 MLD each
Total cycles in 24 hrs4
Duration of fill and Aeration cycle1.5 hrs and 2.5 hrs respectively
Challenges: 
Parameters Avg. Inlet parameters(PPM)Avg. Outlet parameters(PPM)
COD3000800
BOD1800280-300
TDS30001200
Operational Challenges:
  • The primary treatment was working at only 5% efficiency in terms of COD reduction.
  • The entire SBR process was lagging in COD degradation efficiency and sustainability of Mixed Liquor Volatile Suspended Solids (MLVSS).
  • Carryover COD and unsettled biomass were traveling to RO membranes, causing severe damage.
The Approach:

The agency operating the CETP wastewater treatment plant approached us to solve these pressing issues.

We adopted a 3D approach:
  1. Research/Scrutiny:
    Our team visited their facility during the winter season as they faced many challenges. We scrutinized every aspect of the plant to assess the efficiency of each component.
  2. Analysis:
    We analyzed six months of historical data to identify trends in wastewater treatment parameters, including BOD removal efficiency, COD degradation, and total dissolved solids (TDS) reduction.
  3. Innovation:
    Based on our findings, we developed a bioaugmentation strategy by selecting customized products and designing a targeted dosing schedule.
Desired Outcomes:
  • Significant COD and BOD reduction, improving the efficiency of biological treatment systems.
  • Degradation of hard-to-treat industrial effluents and formation of stable biomass to handle shock loads.
  • Enhanced biomass settling, reducing carryover COD and preventing RO membrane damage.
Execution:

Our team selected two products :

T1B Aerobio Bioculture: This product consisted of a blend of microbes as bioculture selected as per our analysis to degrade the recalcitrant COD, and ensure sustainability in the SBR system in CETP. 

Plan of Action:
  1. We devised a 60-day dosing program, divided into two phases:
  • Day 1 to Day 30: Loading dose to accelerate microbial population growth and generate biomass.
  • Day 31 to Day 60: Maintenance Dose, to maintain the population of biomass generated.
2. Dosing Strategy:
  • Dosing was carried out in all 4 SBR aeration tanks during filling and aeration cycles to ensure optimum microbial activity.
Results:
ParametersInlet parametersTank 4 outlet parameters (ppm)
COD3000 ppm280-300 ppm
BOD1800 ppm60-82 ppm

diagram of before and after bioculture, SBR system in CETP
The implementation of bioaugmentation program by SBR system in CETP resulted in significant improvements in the performance of biological units in their WWTP:

✅ Achieved 90% COD and BOD reduction, compared to the previous 70% efficiency.
✅ Reduced CETP operational expenditure (OPEX) by 20%.
✅ Increased ETP capacity utilization to handle full hydraulic load.
✅ Improved biological process stability, making it more resilient to influents fluctuations.
RO membrane health restored, reducing damage by 80%.

Conclusion:

The successful implementation of bioaugmentation with T1B Aerobio Bioculture led to an efficient, cost-effective, and sustainable wastewater treatment system. By enhancing COD degradation efficiency, reducing BOD levels, and improving biomass stability, the CETP wastewater treatment achieved outstanding results. This highlights the importance of biological wastewater treatment solutions in optimizing industrial effluent treatment processes.

 Discover how T1B Aerobio Bioculture can help you today!

Struggling with high COD levels in your wastewater treatment system? Contact us today to know more about how T1B Aerobio Bioculture can help you today!

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Ammoniacal Nitrogen Removal from Wastewater_ Effective Treatment Methods
Ammoniacal Nitrogen Removal from Wastewater: Effective Treatment Methods

Ammoniacal nitrogen (NH₄⁺-N) in wastewater treatment must be removed to prevent environmental damage, comply with discharge regulations, and ensure smooth wastewater treatment plant operations. Various biological treatment methods, physico-chemical, and advanced bioculture wastewater treatment technologies are used for its effective removal.

🌐 Visit: www.teamonebiotech.com/contact-us

nitrogen removal from wastewater

1. Biological Treatment Methods

Biological processes are widely used due to their cost-effectiveness, eco-friendliness, and sustainability.

a) Nitrification-Denitrification

This is the most common biological process for ammonia removal.

Nitrification (Aerobic Process):
  • Ammonia (NH₄⁺) is converted into nitrite (NO₂⁻) and nitrate (NO₃⁻) by nitrifying bacteria (Nitrosomonas and Nitrobacter).
  • Requires oxygen and an optimum pH of 7.5–8.5.
Denitrification (Anoxic Process):
  • Nitrate (NO₃⁻) is converted into nitrogen gas (N₂) by denitrifying bacteria.
  • Occurs in oxygen-depleted conditions, requiring a carbon source like methanol or acetate.
b) Anammox (Anaerobic Ammonium Oxidation)
  • Converts ammonium (NH₄⁺) and nitrite (NO₂⁻) directly into nitrogen gas (N₂).
  • Reduces aeration costs, energy consumption, and sludge production.
  • Used in high-strength ammonia wastewater treatment for industrial effluents and landfill leachate.
c) Use of Specialized Biocultures
  • Tailored microbial consortia in the form of bioculture for wastewater treatment enhance nitrification and denitrification efficiency.
  • Used in Effluent Treatment Plants (ETPs) to accelerate ammonia breakdown and improve process stability.
2. Physico-Chemical Treatment Methods

Used when biological treatments are insufficient or for high-ammonia industrial wastewater.

a) Air Stripping
  • Increases pH (>11) to convert ammonium (NH₄⁺) into ammonia gas (NH₃), which is stripped out using forced aeration.
  • Effective for high-strength wastewater but requires pH neutralization before discharge.
b) Chemical Precipitation
  • Uses magnesium and phosphate to form struvite (MgNH₄PO₄), which can be removed as a solid and even used as a slow-release fertilizer.
c) Breakpoint Chlorination
  • Chlorine oxidizes ammonia into nitrogen gas.
  • Effective but costly, with risks of toxic chlorinated byproducts.
d) Ion Exchange & Adsorption
  • Zeolites or synthetic resins selectively remove ammonium ions.
  • Suitable for low-ammonia wastewater but requires periodic regeneration.

3. Advanced Treatment Technologies
  • Membrane Bioreactors (MBRs) – Combine biological treatment with ultrafiltration for enhanced ammonia removal.
  • Electrochemical Oxidation – Uses electrolysis to convert ammonia into nitrogen gas.
  • Constructed Wetlands – Natural treatment using plants and microbes to remove ammonia.
  • Reverse Osmosis (RO) – A high-pressure filtration system that removes ammonium, nitrates, and other contaminants from wastewater.
  • Advanced Oxidation Processes (AOPs) – Uses ozone (O₃), UV-H₂O₂, or Fenton’s reagent for chemical oxidation of ammonia in wastewater.
Conclusion

The selection of an  ammoniacal nitrogen removal method depends on wastewater characteristics, treatment goals, cost considerations, and environmental regulations. Biological processes like bioculture for wastewater treatment and nitrification-denitrification are preferred for municipal wastewater, while physico-chemical and advanced methods are used for industrial effluents with high ammonia loads.

Are you looking for a reliable Microbial Culture Company In India?

🔹 Discover More on YouTube – Watch our latest insights & innovations!-
🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

📞 Contact us today to explore customized bioremediation strategies for your industry!
📧 Email: sales@teamonebiotech.com
🌐 Visit: www.teamonebiotech.com/contact-us

Ammoniacal Nitrogen In Wastewater Wastewater Treatment Methods
Ammoniacal Nitrogen in Wastewater: Challenges & Treatment Solutions
What is Ammoniacal Nitrogen?

Ammoniacal nitrogen (NH₄⁺-N) is a crucial parameter in wastewater treatment, representing ammonia (NH₃) and ammonium ions (NH₄⁺). It primarily originates from industrial effluents, municipal sewage, and agricultural runoff. High concentrations of ammoniacal nitrogen can be toxic to aquatic life, cause oxygen depletion in water bodies, and contribute to eutrophication and nitrate contamination. The need for efficient biocultures for ETP (Effluent Treatment Plants) is growing as industries seek sustainable wastewater solutions.

🌐 Visit: www.teamonebiotech.com/contact-us

nitrogen removal from wastewater

Sources of Ammoniacal Nitrogen in Wastewater
  • Industrial Wastewater – Fertilizer, textile processing, and chemical manufacturing industries discharge high levels of ammoniacal nitrogen.
  • Municipal Sewage – Organic matter decomposition, septic systems, and sludge digestion contribute to ammonia buildup.
  • Agricultural Runoff – Leaching of synthetic fertilizers, livestock waste, and manure management result in nitrogen contamination.
Environmental & Regulatory Concerns

Excess ammoniacal nitrogen leads to surface water pollution, affecting aquatic ecosystems and drinking water quality. Regulatory bodies such as the CPCB (India), USEPA (USA), and the EU Water Framework Directive have established strict discharge limits for ammonia levels to prevent aquatic toxicity. To comply with these regulations, industries are increasingly adopting biocultures for ETP to enhance wastewater treatment efficiency.

Ammoniacal Nitrogen Treatment Technologies
Biological Treatment
  • Nitrification & Denitrification – Utilizing specialized microbial cultures/biocultures, including bio cultures for wastewater treatment and bacteria cultures for effluent treatment plants, to convert ammonia into nitrogen gas.
  • Bioremediation Techniques – Custom bioculture for wastewater solutions improve ammonia removal efficiency in wastewater treatment plants.
  • Advanced Solutions – Customized bioculture formulations, enzymatic treatment, and membrane bioreactors (MBR) for efficient ammonia removal
Physico-Chemical Treatment
  • Air Stripping – Removes volatile ammonia by increasing pH and aeration.
  • Chemical Oxidation – Uses oxidizing agents like chlorine or ozone to convert ammonia to nitrogen gas.
  • Coagulation-Flocculation & Ion Exchange – Enhances ammonia removal through chemical precipitation and exchange processes.

wastewater treatment solutions

Advanced Solutions
  • Customized Bioculture Formulations – Tailored microbial solutions for effective ammoniacal nitrogen breakdown.
  • Enzymatic Treatment – Biotechnological advancements aid in ammonia degradation.
  • Membrane Bioreactors (MBR) – Advanced filtration systems for wastewater treatment plant optimization.
  • Aquaculture Probiotics – Beneficial bacterial strains improve water quality in aquaculture applications.
Conclusion

Controlling ammoniacal nitrogen in wastewater treatment plants is essential for environmental sustainability. Industries must adopt efficient treatment strategies such as biocultures for ETP, bio cultures for wastewater treatment, and eco-friendly alternatives to ensure regulatory compliance and reduce ecological impact. By leveraging innovative solutions, including bio cultures for ETP, industries can significantly improve wastewater treatment efficiency.

Are you looking for a reliable wastewater treatment solution?

🔹 Discover More on YouTube – Watch our latest insights & innovations!-
🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

📞 Contact us today to explore customized bioremediation strategies for your industry!
📧 Email: sales@teamonebiotech.com
🌐 Visit: www.teamonebiotech.com/contact-us

Ammoniacal Nitrogen In Industrial Challenges & Treatment Solutions
Ammoniacal Nitrogen in Industrial Wastewater: Pollution Scenario, Challenges, and Treatment Solutions
Introduction 

Ammoniacal nitrogen (NH₄⁺-N) in industrial wastewater treatment is a major environmental concern, as excessive levels contribute to water pollution, aquatic toxicity, and ecosystem degradation. Industries such as fertilizers, pharmaceuticals, food processing, and textiles discharge wastewater containing high ammoniacal nitrogen concentrations, leading to regulatory challenges and treatment complexities. This blog explores the sources, current pollution scenario, treatment challenges, and possible remedies for bio cultures for wastewater treatment removal.

🌐 Visit: www.teamonebiotech.com/contact-us/

What is Ammoniacal Nitrogen in Wastewater?

Ammoniacal nitrogen refers to the presence of ammonia (NH₃) and ammonium ions (NH₄⁺) in wastewater. It primarily originates from the breakdown of organic matter, industrial effluents, and agricultural runoff. Ammoniacal nitrogen can exist in two forms:

  • Free Ammonia (NH₃): Highly toxic to aquatic life and more prevalent at higher pH levels.
  • Ionized Ammonium (NH₄⁺): Less toxic and dominant in lower pH conditions.
Industries Contributing to Ammoniacal Nitrogen Pollution

Several industries discharge wastewater with high ammoniacal nitrogen content, significantly impacting water bodies. The primary contributors include:

  • Fertilizer and Chemical Manufacturing
    • Produces high-nitrogen wastewater due to the use of ammonia-based compounds.
    • Uncontrolled discharges can lead to groundwater contamination and river pollution.
  • Pharmaceutical Industry
    • Wastewater contains nitrogen-rich residues from drug manufacturing.
    • Antibiotic residues can disrupt microbial treatment processes in ETPs.
  • Textile and Dyeing Industry
    • Uses ammonia-based chemicals for dye fixation and fabric processing.
    • Effluents with high ammoniacal nitrogen impact river ecosystems.
  • Food and Beverage Processing
    • Meat processing, dairy, and breweries generate wastewater with organic nitrogen.
    • Anaerobic degradation releases ammoniacal nitrogen, affecting treatment efficiency.
Current Pollution Scenario of Ammoniacal Nitrogen
Global Perspective
  • India: The Yamuna and Ganga rivers have recorded rising ammoniacal nitrogen levels due to untreated industrial effluents and municipal sewage.
  • China: The Yellow River has suffered severe pollution incidents linked to ammoniacal nitrogen from chemical plants and livestock waste.
  • USA & Europe: Regulatory bodies such as the USEPA and EEA have identified industrial nitrogen discharge as a major contributor to water pollution, affecting ecosystems and drinking water quality.
Recent Incidents
  • 2018: CPCB (India) flagged ammoniacal nitrogen as a major pollutant in the Yamuna River due to industrial discharge.
  • 2023: European rivers witnessed a 15% increase in nitrogen pollution, with fertilizers and industrial waste being the primary sources.
Challenges in Treating Ammoniacal Nitrogen in Wastewater
  1. Biological Treatment Limitations
    • High ammonia levels can inhibit microbial activity in conventional biological treatment systems.
    • Nitrification and denitrification processes require strict operational control and optimal pH, temperature, and oxygen levels.
  2. High Treatment Costs
    • Advanced bio cultures for wastewater treatment technologies such as ammonia stripping, ion exchange, and membrane filtration are expensive to implement and maintain.
    • Energy-intensive processes increase operational costs for industries.
  3. Regulatory Compliance
    • Stringent discharge norms require industries to consistently monitor and control ammoniacal nitrogen levels.
    • Non-compliance can lead to legal penalties and environmental liabilities.
Effective Remedies for Ammoniacal Nitrogen Removal
  1. Biological Treatment Methods

    • Nitrification-Denitrification
      • Nitrification: Ammonia is oxidized to nitrite (NO₂⁻) and then nitrate (NO₃⁻) using nitrifying bacteria (Nitrosomonas and Nitrobacter).
      • Denitrification: Nitrate is converted to nitrogen gas (N₂) under anoxic conditions using denitrifying bacteria.
    • Anammox Process
      • Anaerobic Ammonium Oxidation (Anammox) directly converts ammonium and nitrite into nitrogen gas.
      • Reduces aeration costs and sludge generation compared to conventional methods.
  2. Physico-Chemical Treatment Methods

    • Ammonia Stripping
      • Wastewater is treated at high pH (>11) to convert ammonium ions into free ammonia gas, which is then removed by air stripping.
      • Effective for high-strength industrial wastewater but requires pH adjustment before discharge.
    • Ion Exchange & Adsorption
      • Uses zeolites or synthetic resins to remove ammonium ions from wastewater.
      • Suitable for industries with low ammoniacal nitrogen loads but requires frequent regeneration.
    • Breakpoint Chlorination
      • Chlorine is added to wastewater to oxidize ammonia into nitrogen gas.
      • Costly and generates harmful chlorinated byproducts if not controlled properly.
  3. Advanced and Sustainable Solutions

    • Membrane Bioreactors (MBRs): Integrates biological treatment with ultrafiltration for efficient ammonia removal.
    • Constructed Wetlands: Uses plants and microbes to naturally remove ammoniacal nitrogen.
    • Customized Biocultures: Specialized microbial formulations enhance nitrification efficiency and improve ETP performance.
Conclusion

Ammoniacal nitrogen pollution from industrial wastewater remains a critical environmental issue. While treatment challenges exist, adopting a combination of biological, physico-chemical, and advanced treatment methods can ensure effective ammonia removal. Industries must invest in sustainable solutions and comply with stringent regulations to prevent water pollution and protect aquatic ecosystems. Implementing bio cultures for wastewater treatment and optimizing treatment processes can significantly improve industrial wastewater management.

Are you looking for a reliable wastewater treatment solution?

🔹 Discover More on YouTube – Watch our latest insights & innovations!-
🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

📞 Contact us today to explore customized bioremediation strategies for your industry!
📧 Email: 
sales@teamonebiotech.com
🌐 Visit: www.teamonebiotech.com/contact-us/

Impacts of Ammoniacal Nitrogen in Water and Wastewater
Impacts of Ammoniacal Nitrogen in Water and Wastewater

Ammoniacal nitrogen (NH₄⁺-N) is a crucial water quality parameter that influences aquatic ecosystems, wastewater treatment processes, and industrial effluent management. High concentrations can pose severe environmental risks and operational challenges for municipal wastewater treatment plants, industrial wastewater systems, and agricultural runoff management. Effective bioculture for wastewater treatment is essential to mitigate these impacts.

🌐 Visit: www.teamonebiotech.com/contact-us

1. Environmental Impacts

Toxicity to Aquatic Life – Free ammonia (NH₃) is toxic to fish and other aquatic organisms, affecting respiration, and metabolism. Even low levels (≥0.1 mg/L NH₃-N) can be harmful.

Oxygen Depletion – Ammonia oxidation (nitrification) consumes dissolved oxygen (DO), leading to hypoxia and potential fish kills.

Eutrophication – Excess nitrogen compounds, including ammonium ions, contribute to algal blooms, reducing oxygen levels and degrading surface water quality.

pH Alteration – Ammonia can raise water pH, making it unsuitable for sensitive aquatic ecosystems, including freshwater lakes, wetlands, and coastal waters.

2. Wastewater Treatment Challenges

Inhibited Biological Treatment – High ammonia concentrations can inhibit nitrifying bacteria, disrupting biological nitrogen removal (BNR) and anaerobic digestion processes. Bioculture for wastewater plays a vital role in restoring microbial balance.

Increased Operational Costs – Advanced ammonia removal technologies, such as nitrification-denitrification, ion exchange, and chemical precipitation, require aeration energy, monitoring systems, and chemical dosing, increasing wastewater treatment costs.

Sludge Bulking & Foaming – Ammonia fluctuations can disturb the microbial community balance, leading to poor sludge settling, filamentous bulking, and foam formation in activated sludge systems.

3. Regulatory & Public Health Concerns

Drinking Water Contamination – Excess ammonia can lead to nitrite formation, posing a risk of methemoglobinemia (“blue baby syndrome”), particularly in infants and pregnant women.

Stringent Discharge LimitsEnvironmental regulations, such as those set by the EPA, CPCB, and EU Water Framework Directive, impose strict ammonia discharge limits to prevent groundwater pollution, surface water degradation, and ecological imbalances. Industries must implement efficient wastewater treatment solutions, including biological treatment, physico-chemical processes, and customized bio cultures for wastewater treatment.

Conclusion

Managing ammoniacal nitrogen in wastewater effluents is essential to protect natural water bodies, ensure regulatory compliance, and maintain efficient treatment plant operations. Implementing advanced ammonia removal methods, such as bioculture for wastewater, bioaugmentation, membrane bioreactors (MBR), and electrochemical oxidation, can help achieve sustainable nitrogen management in municipal and industrial wastewater treatment plants.

Are you looking for a reliable bioculture company in india?

🔹 Discover More on YouTube – Watch our latest insights & innovations!
🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

📞 Contact us today to explore customized bioremediation strategies for your industry!
📧 Email: sales@teamonebiotech.com
🌐 Visit: www.teamonebiotech.com/contact-us

Scan the code