Understanding BOD & COD: Beyond the Numbers
The real meaning of BOD & COD-Treat the problems, not the numbers

In the world of wastewater treatment, BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) are the most prominent parameters that are considered as pollution indicators. Treated as villains on an EHS dashboard—targets to be brought down, values to be minimized. But what do these numbers truly represent? What kind of organics do they qualify, and more importantly, who in the microbial world is responsible for bringing them down?

Many experts associate these with bod and cod in wastewater practices and their real impact on treatment efficiency.

Effluent treatment is not just a numbers game. It’s a microbial battleground—a complex “tug of war” between different microbial groups vying for pollutants/substrates, adapting to environmental pressures, and working together (or competing) to mineralize organics. In this blog, we explore the microbiological nuances behind bod and cod removal, how substrate complexity affects microbial degradation, and why a high COD isn’t always as alarming as it appears.

Understanding bod cod analysis can help in refining real-time operations and system design.

The Basics: What BOD and COD Really Measure?

Before we dive into the microbial dynamics, let’s clarify the distinction.

BOD (Biochemical Oxygen Demand) is the amount of oxygen aerobic microbes require to degrade the organic matter, while COD (Chemical Oxygen Demand) quantifies the total oxygen equivalent required to chemically oxidize all organic matter (biodegradable + non-biodegradable) using a strong oxidizing agent like potassium dichromate.

These two are the cornerstone parameters in industrial wastewater treatment systems and compliance monitoring.

BOD < COD always, because COD includes organics that microbes simply cannot digest or take longer to degrade.

The bod cod ratio offers deeper insight into treatment feasibility and system design.

From an EHS perspective: High COD indicates total organic pollution load, while high BOD reflects readily biodegradable organics. Both values are essential to understand how much pollution is treatable biologically and what might need polishing steps or advanced oxidation.

Tracking wastewater parameters like BOD and COD regularly can optimize the sewage treatment process.

Microbes on the Frontline: Who Eats What?

In biological treatment, different microbes have different dietary preferences. Let’s break down the microbial players and the type of organics they typically handle:

Microbe TypePreferred SubstratesTypical Zone
Heterotrophic bacteriaSimple organics: sugars, alcohols, VFAsAerobic & Anoxic
Autotrophs (e.g., nitrifiers)Ammonia and nitrite (not BOD/COD reducers)Aerobic
Facultative bacteriaComplex and simple organicsFacultative zones
Anaerobic consortiaProteins, lipids, cellulose (via hydrolysis → VFAs)Anaerobic digesters
FungiLignin, dyes, complex non-biodegradable organicsLow-pH, low-DO

These microbial consortia play a vital role in bioaugmentation and microbial treatment in wastewater.

The ability of microbes to remove BOD and COD depends heavily on the complexity of the organic compounds:

  • Simple organics (low molecular weight): Easily removed in an activated sludge or aerobic digestion process.
  • Complex organics (e.g., phenolics, surfactants, dyes, oils): Require anaerobic process and longer retention time.

Effective treatment starts by understanding the organic load in wastewater and choosing the right microbial tools.

Substrate Complexity: Why It Matters

Not all COD is equal. Consider this:

A sugar-rich food processing effluent with COD 6000 ppm may have a BOD/COD ratio of 0.8 – meaning most of it is biodegradable.

A dye-laden textile effluent with the same COD might have a BOD/COD ratio of 0.2—signifying poor biodegradability.

Such complex effluents need multi-stage biological systems or pre-treatment with specific cultures.

Key Insight:

The BOD/COD ratio is a more insightful metric than standalone COD. Ratios:

  • 0.6: Easily biodegradable
  • 0.4–0.6: Moderately biodegradable
  • <0.4: Poorly biodegradable; may need physico-chemical treatment

In wastewater management, this ratio informs engineers whether nutrient removal or advanced oxidation is required.

Why High COD Isn’t Always Bad?

Let’s bust a common myth:

“High COD = Bad effluent” is not always true.

Imagine a brewery effluent with COD 20,000 ppm. That’s high, but it’s primarily from sugars, alcohols, and yeast residues—all highly biodegradable. A well-seeded biological reactor can bring it down to <200 ppm BOD with minimal retention time.

This shows how biodegradable wastewater with high COD still allows for efficient treatment if the microbial ecosystem is well-managed.

The issue isn’t how much COD, but:

  • What kind of organics are present?
  • Are they toxic to microbes?
  • What is the system design (anaerobic first, aerobic polishing, etc.)?

This is where environmental monitoring and EHS in wastewater become indispensable.

Winning the Microbial Tug of War

If COD removal is a tug of war, here’s how to tip the balance:

  • Pre-treatment & Equalization: pH adjustment, oil & grease removal, and flow equalization prevent microbial shocks.
  • Segmented Treatment Zones: Anaerobic → Anoxic → Aerobic → Polishing ensures sequential degradation of complex substrates.
  • Use of Custom Biocultures: Tailored microbial blends (like lignin-degraders or surfactant–eaters) enhance specific removal.
  • Nutrient Balancing: C:N:P ratio is essential. Too much carbon without nitrogen/phosphorus slows down microbial growth.
  • Monitoring & Feedback: Online DO, ORP, and real-time COD analyzers help in dynamic adjustment

Each of these is critical for maintaining optimal microbial load and ensuring full biological oxygen demand reduction.

Final Thought: Treating the Problem, Not Just the Number

COD and BOD are not just compliance metrics—they are windows into the microbial and chemical world inside your ETP. A high COD is only dangerous if:

  • It overwhelms the biological system
  • It contains toxins
  • Or it is mismanaged

With the right microbial consortia, proper process staging, and continuous EHS vigilance, even high-COD effluents can be efficiently treated—transforming a ‘problematic’ effluent into a sustainable output.

This makes bod cod full form far more than a definition—it’s a philosophy for modern types of wastewater management.

After all, in the tug of war between pollution and treatment, it’s the micro-warriors who win it for us—if we give them the right battlefield.

Team One Biotech is one of the leading Biotech Companies in India, providing advanced microbial solutions like bacteria for ETP treatment and bacteria culture for wastewater treatment.
📩 Reach out now to enhance your wastewater treatment efficiency.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Bioculture-Based Treatment of Recalcitrant COD
Bioculture-Based Treatment of Recalcitrant COD in Pharmaceutical Effluents
Introduction

It often happens that an Effluent Treatment Plant’s (ETP) chemical oxygen demand (COD) degrading efficiency becomes stagnant at a certain point. Despite trying multiple wastewater treatment methods and technologies, breaking this threshold remains a challenge. The real culprit behind such scenarios is the presence of recalcitrant COD in pharma effluents.

Pharmaceutical wastewater, in particular, presents high COD and BOD challenges due to persistent Active Pharmaceutical Ingredients (APIs), solvents, and excipients that resist biological treatment. Conventional systems often struggle to meet regulatory compliance, making microbial culture-based treatment a promising alternative. This blog explores treatment efficiency, plant configurations, cost analysis, and pilot project insights for implementing enzyme-based bioculture in pharma effluent treatment.

To learn more about effective solutions for reduction of recalcitrant COD reduction in Pharmaceutical Effluents, feel free to contact us.

1. Understanding Bioculture-Based Treatment for Pharma Effluent
How Biocultures Work?

Microbial culture is a specialized microbial consortia capable of degrading recalcitrant COD through enzymatic breakdown. They work via:

Advanced oxidation processes – Breaks complex organic compounds into biodegradable intermediates. 

Co-Metabolism – Uses an additional carbon source to enhance pollutant degradation. 

Biofilm Formation – Protects microbes from toxic compounds and improves stability in treatment systems.

Targeted Degradation of Recalcitrant COD Components
Pharma CompoundCommon SourceMicrobial Strains UsedEnzymes InvolvedDegradation Pathway
ParacetamolPainkillersPseudomonas putida, Bacillus subtilisAmidase, LaccaseAmide hydrolysis to p-aminophenol, oxidation
Ibuprofen & DiclofenacNSAIDsSphingomonas sp., Rhodococcus sp.Dioxygenases, HydrolasesHydroxylation & carboxylation of aromatic rings
Ciprofloxacin & OfloxacinAntibioticsAcinetobacter sp., Pseudomonas aeruginosaMonooxygenasesQuinoline ring cleavage
Erythromycin & AzithromycinMacrolide AntibioticsBacillus licheniformisEsterase, OxidaseEster bond hydrolysis, oxidation
Estradiol & ProgesteroneHormonesComamonas testosteroni, Mycobacterium sp.Hydroxylase, DehydrogenaseSteroid ring hydroxylation
ChloramphenicolAntibioticsPseudomonas fluorescensReductase, HydrolaseNitro group hydrolysis
Azo Dyes (Erythrosine, Tartrazine)Coloring AgentsPseudomonas aeruginosa, Shewanella oneidensisAzoreductaseAzo bond cleavage
Nonylphenols, PEGsSurfactantsSphingomonas sp., Pseudomonas sp.Oxidase, β-OxidaseOxidation of alkyl chains
2. Treatment Systems Configurations Using Biocultures
Plant Design for Pharma Wastewater Treatment Process
Stage 1: Pre-Treatment (Equalization & Primary Treatment)

Objective: Remove suspended solids, neutralize pH, and reduce initial COD load.

Equalization Tank – Balances flow & pH (6.5–7.5).
Coagulation-Flocculation – Removes large particulates (e.g., PAC or FeCl₃).
Screening & Oil Removal – Eliminates large solids and oil residues.

Stage 2: Advanced Biological Treatment with Microbial Culture

✅ Moving Bed Biofilm Reactor (MBBR) or Sequential Batch Reactor (SBR) – Bioculture for STP wastewater treatment

✅ Optimized Microbial Seeding – Customised culture for targeted degradation. 

✅ Retention Time: 24–36 hours for reaction time.

Stage 3: Advanced Oxidation Processes & Membrane Filtration 

Fenton’s Process / Ozonation – Further breaks down recalcitrant COD

Membrane Bioreactor (MBR) or Reverse Osmosis (RO) – Final purification.

Stage 4: Sludge Management & Water Reuse

✅ Dewatering & Sludge Handling – Using filter press or centrifugation. 

✅ Effluent Recycling – Treated water reused for lagoons wastewater treatment.

3. Pilot Project Insights: Real-World Applications
Case Study 1: Antibiotic Manufacturing Effluent Treatment

📍 Location: India | COD Level: 10,000 mg/L

✅ Solution: Bioculture companies for wastewater treatment (Acinetobacter sp. & Pseudomonas sp. in MBBR). 

✅ Result:

  • COD reduced by 85% (Final COD: <500 mg/L).
  • Reduced toxicity – No microbial inhibition observed.
Case Study 2: NSAID (Ibuprofen & Diclofenac) Removal

📍 Location: Europe | COD Level: 8000 mg/L
✅ Solution: SBR + Microbial Culture Companies in India (Rhodococcus + Sphingomonas). 

✅ Result:

  • COD reduced by 90% (Final COD < 250 mg/L).
  • High removal of Ibuprofen (96%) & Diclofenac (89%).
4. Cost Analysis of Bioculture-Based Treatment
Cost ComponentEstimated Cost (₹/m³)Description
Bioculture Seeding₹3–6Initial inoculation for microbial growth
Reactor Operation (MBBR/SBR)₹15–20Aeration, energy, and microbial maintenance
AOP (Ozonation/Fenton’s Process)₹8–12Advanced oxidation for recalcitrant organics
Membrane Treatment (RO/MBR)₹12–18Filtration and final polishing
Total Treatment Cost₹38–56 per m³Cost-effective compared to ZLD (₹80-100 per m³)
Key Takeaways:
  • Bioculture-based treatment reduces overall cost by 30–50% compared to purely chemical or ZLD systems.
  • Lower sludge production compared to coagulation-based treatments.
  • Faster startup time (2–3 weeks) compared to conventional activated sludge.
Conclusion: The Future of Biocultures in Pharma Effluent Treatment

🔹 Bioremediation companies in India offer a sustainable & cost-effective solution for treating recalcitrant COD in pharma effluents.
🔹 Bioculture companies in India can provide enzyme-based bioculture tailored for specific APIs, ensuring high pollutant removal.
🔹  Integrating biocultures with advanced oxidation & MBBR/SBR technology enhances efficiency & meets regulatory standards.

If you’re looking for expert guidance or customized solutions for your ETP, our team is here to help!

Contact us today for a consultation or to learn more about how we can support your effluent treatment needs!

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Scan the code