Implementation of SBR systems in CETP
Implementation of SBR System in a CETP with T1B Aerobio Bioculture
Introduction:

The Common Effluent Treatment Plant (CETP) situated in Rajasthan handles effluents from over 40 industries in the RIICO sector. Equipped with SBR system in CETP technology, the system faces difficulty in handling the load of Chemical Oxygen Demand (COD) above 2000 PPM, owing to discharges from textiles and chemicals. The SBR wastewater treatment system, with 4 biological tanks and 4 cycles a day, was struggling with its efficiency in terms of COD reduction, resulting in high outlet COD levels. This excess load was carried over to the Reverse Osmosis (RO) system, leading to membrane damage and increased operational expenses (OPEX).

To explore effective solutions for optimizing wastewater treatment and improving COD reduction efficiency, you can reach out to Team One Biotech

ETP details:

The industry had primary treatment, biological treatment, and then a tertiary treatment.

Flow (current)2 MLD
Type of processSBR
No. of aeration tanks4
Capacity of aeration tanks3 MLD each
Total cycles in 24 hrs4
Duration of fill and Aeration cycle1.5 hrs and 2.5 hrs respectively
Challenges: 
Parameters Avg. Inlet parameters(PPM)Avg. Outlet parameters(PPM)
COD3000800
BOD1800280-300
TDS30001200
Operational Challenges:
  • The primary treatment was working at only 5% efficiency in terms of COD reduction.
  • The entire SBR process was lagging in COD degradation efficiency and sustainability of Mixed Liquor Volatile Suspended Solids (MLVSS).
  • Carryover COD and unsettled biomass were traveling to RO membranes, causing severe damage.
The Approach:

The agency operating the CETP wastewater treatment plant approached us to solve these pressing issues.

We adopted a 3D approach:
  1. Research/Scrutiny:
    Our team visited their facility during the winter season as they faced many challenges. We scrutinized every aspect of the plant to assess the efficiency of each component.
  2. Analysis:
    We analyzed six months of historical data to identify trends in wastewater treatment parameters, including BOD removal efficiency, COD degradation, and total dissolved solids (TDS) reduction.
  3. Innovation:
    Based on our findings, we developed a bioaugmentation strategy by selecting customized products and designing a targeted dosing schedule.
Desired Outcomes:
  • Significant COD and BOD reduction, improving the efficiency of biological treatment systems.
  • Degradation of hard-to-treat industrial effluents and formation of stable biomass to handle shock loads.
  • Enhanced biomass settling, reducing carryover COD and preventing RO membrane damage.
Execution:

Our team selected two products :

T1B Aerobio Bioculture: This product consisted of a blend of microbes as bioculture selected as per our analysis to degrade the recalcitrant COD, and ensure sustainability in the SBR system in CETP. 

Plan of Action:
  1. We devised a 60-day dosing program, divided into two phases:
  • Day 1 to Day 30: Loading dose to accelerate microbial population growth and generate biomass.
  • Day 31 to Day 60: Maintenance Dose, to maintain the population of biomass generated.
2. Dosing Strategy:
  • Dosing was carried out in all 4 SBR aeration tanks during filling and aeration cycles to ensure optimum microbial activity.
Results:
ParametersInlet parametersTank 4 outlet parameters (ppm)
COD3000 ppm280-300 ppm
BOD1800 ppm60-82 ppm

diagram of before and after bioculture, SBR system in CETP
The implementation of bioaugmentation program by SBR system in CETP resulted in significant improvements in the performance of biological units in their WWTP:

✅ Achieved 90% COD and BOD reduction, compared to the previous 70% efficiency.
✅ Reduced CETP operational expenditure (OPEX) by 20%.
✅ Increased ETP capacity utilization to handle full hydraulic load.
✅ Improved biological process stability, making it more resilient to influents fluctuations.
RO membrane health restored, reducing damage by 80%.

Conclusion:

The successful implementation of bioaugmentation with T1B Aerobio Bioculture led to an efficient, cost-effective, and sustainable wastewater treatment system. By enhancing COD degradation efficiency, reducing BOD levels, and improving biomass stability, the CETP wastewater treatment achieved outstanding results. This highlights the importance of biological wastewater treatment solutions in optimizing industrial effluent treatment processes.

 Discover how T1B Aerobio Bioculture can help you today!

Struggling with high COD levels in your wastewater treatment system? Contact us today to know more about how T1B Aerobio Bioculture can help you today!

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Scan the code