Sludge Bulking vs. Sludge Settling Ways to improve wastewater treatment in India
Sludge Bulking vs Settling: Biotech Companies in India

Our MLSS is quite high, but we are not getting enough settling. “ or “Our biomass development is very good as our MLSS is high, but we have very little BOD/COD reduction”. these statements are often given by EHS managers. However, the concept of MLSS is completely misunderstood; it’s never the quantity of MLSS, it’s always the quality of MLSS. The settling of sludge and BOD reduction always correspond with how good the MLSS is, and not how much it is.

This blog intricately explains the difference between sludge bulking and sludge settling, and which factors are necessary to look out for.

Sludge Settling vs Sludge Bulking:

With the growing awareness of operational efficiency, several biotech companies in India are now addressing sludge bulking challenges through microbial innovation and advanced diagnostics.

Healthy Sludge Settling:

In a well-operating secondary clarifier, biomass flocs are compact, dense, and settle rapidly. The supernatant above appears clear, and the sludge blanket remains stable.

Sludge Bulking:

Here, the sludge appears fluffy, loose, and struggles to compact at the bottom. The supernatant turns turbid, and sludge blankets may rise or disperse.

ParameterHealthy SettlingSludge Bulking
SVI (Sludge Volume Index)80–120 mL/g>150 mL/g
Sludge appearanceDense, compact flocsLoose, filamentous flocs
SupernatantClearTurbid
Settling time20–30 mins>45 mins
CauseBalanced systemFilamentous overgrowth, F/M imbalance
Why Good MLSS ≠ Good Settling

Operators often celebrate high MLSS as a sign of strong microbial population. But MLSS is a mass reading-It doesn’t distinguish between healthy floc-formers and problem-causing filamentous organisms.

“ Think of it like body weight: Two individuals weigh the same, but one may be with lean muscle, the other with excessive fat.

In bulking scenarios, the bulk of MLSS is held together by filamentous bacteria-these long, thread-like organisms stretch out of flocs, creating open, web-like structures that trap water and resist compaction.

Reliable biocultures companies have been instrumental in developing floc-forming microbial strains specifically tailored for bulking control.

What Causes Sludge Bulking?
  1. Filamentous Bacteria Overgrowth

Common species: Type 021N, Sphaerotilus, Microthrix parvicella, Thiothrix

These bacteria thrive under specific conditions such as:

Low DO (<1.0 mg/l) – especially at floc centers.

High F/M ratios – excess food leads to dominance of fast-growing filaments

Nutrient Imbalance– N and P deficiency affect floc formation

Surfactants and FOG – common in food, dairy, and textile industries

Hydraulic surges – shock loading from upstream process

Leading microbial companies in India are providing industry-specific solutions for complex ETP issues, helping clients achieve consistent results in variable conditions.

 

  1. F/M Ratio Imbalance

Too much organic load relative to MLSS results in excessive microbial growth, and filamentous bacteria often outcompete floc-formers.

Ideal F/M ratio: 0.2-0.5 kg BOD/kg MLSS/day

Bulking is more likely when F/M > 0.6 or < 0.1, especially during inconsistent feed conditions.

  1. pH and Toxic Shocks

Sudden changes in pH (below 6.5 or above 8.5) , or toxic loads (solvents, phenols, metals) can kill floc-formers and allow filaments to dominate during regrowth. However, Solutions like those from Team One Biotech, a known player among bioculture for ETP STP plant manufacturers, are reshaping how industries manage MLSS health and sludge behavior.

 

Decoding SVI and other key Indicators

Sludge Volume Index (SVI) is the gold standard for assessing settleability.

  • SVI = ( Settled sludge volume in 30 mins, mL/L) / MLSS (g/L)
  • SVI < 100 = Good settling
  • SVI 120–150 → Early warning of bulking
  • SVI > 200 → Severe bulking

Other red flags:

  • Rising sludge in the clarifier
  • Scum layer formation
  • Poor TSS in final discharge
  • Varying DO and pH patterns in aeration tanks
Countermeasures- How to fix Bulking?

In addition to microbial solutions, industrial odor control systems  also play a pivotal role in overall ETP performance and workplace hygiene.

Short-Term Fixes:

  • Chlorination or Peracetic Acid Dosing: Targets filamentous bacteria selectively. Start with 0.5–1 ppm, monitor response.
  • Increase DO Levels: Maintain >2.0 mg/L throughout the aeration tank, especially in large tanks or tanks with dead zones.
  • Sludge Wasting: Reduce SRT (sludge retention time) to control filament growth. Remove excess MLSS.
  • Polymers in Clarifier: For emergency clarity issues, short-term use of cationic polymers can compact sludge.

Long-Term Solutions:

  • Nutrient Balancing: Maintain COD:N:P at approx. 100:5:1. Add urea or DAP if needed.
  • Equalization Tank: Smooth out hydraulic/organic loading rates to the aeration tank.
  • Bioculture Regeneration: Consider seeding with robust floc-forming consortia after bulking episodes.
  • Upgrade Aeration: Switch to fine-bubble diffused aeration systems to improve oxygen transfer.
  • Micronutrient Support: Trace metals like iron, cobalt, and molybdenum support healthy floc formers.

If you’re exploring biocultures for ETP plant manufacturers in India or need effective bacteria solutions for wastewater treatment, Team One Biotech offers proven blends tested across sectors.

Conclusion:

Remember one quote: What settles well, treats well. MLSS and BOD tell only one part of the story – settleability, floc health, and microbial balance complete the picture.

As experts and EHS leaders, we must look beyond the dashboard. A 3500 mg/L MLSS might impress, but if your sludge floats and supernatant clouds, your ETP is already sending you a warning.

Looking for a trusted waste water treatment company to resolve sludge settling problems? Contact Team One Biotech today for tailored solutions and microbial consultation.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Anaerobic Wastewater Treatment: Demystifying Methanogenesis
Anaerobic Wastewater Treatment: Demystifying Methanogenesis

The wastewater treatment world is an unending sea of types of processes and variations. One such process, the anaerobic treatment, holds a prominent and popular reputation due to its low CAPEX-OPEX and generation of byproducts such as methane, which is valuable as well as a clean energy source.

The process that leads to methane production is known as methanogenesis-which is the final and slowest step in the anaerobic digestion chain, where intermediate acids and hydrogen are converted into methane.

However, the process is mostly underperforming in the industries due to its bottlenecks and variable mechanism. This blog helps readers understand the intricacies of methanogenesis and helps understand the concept and mechanism.

In the rapidly evolving landscape of anaerobic wastewater treatment, industries are recognizing the limitations of traditional systems and turning toward advanced, high-efficiency strategies. With increasing load from industrial effluent treatment, especially containing high COD and toxic compounds, the need for anaerobic bioreactor optimization is more critical than ever.

With the increasing demand for bacteria solutions for wastewater treatment, industries are actively seeking partners who understand both biology and process engineering.

Companies like Team One Biotech lead the way among bioculture companies and microbial companies in India, delivering high-performance strains suited for industrial ETPs.

We provide expert consulting and microbial formulations tailored for anaerobic systems. Contact us today to learn more about our solutions and transform your treatment process.

What is Methanogenesis?

Methanogenesis is the last step in anaerobic digestion, where the end products from acetogenesis and acedogenesis process are converted into methane gas and CO2 by methanogenic archaea.

Modern facilities strive for not just compliance but profitability through biogas production efficiency, transforming waste streams into energy assets. The use of engineered microbial consortia, such as T1B Anaerobio, ensures higher methane recovery from wastewater even under challenging conditions like salinity and shock loads.

Core stages of Anaerobic Digestion:

  1. Hydrolysis: Breakdown of complex organics (proteins, carbs, Fats)
  2. Acidogenesis: Fermentation into VFAs (volatile fatty acids), alcohol, H2.
  3. Acetogenesis: Conversion of VFAs into acetate, H2, and CO2.
  4. Methanogenesis: Final step producing CH4 and CO2.

Types of methanogens:

PathwayMicrobial GroupSubstrate
AcetoclasticMethanosaeta, MethanosarcinaAcetate → CH₄ + CO₂
HydrogenotrophicMethanobacterium, MethanococcusH₂ + CO₂ → CH₄

 

These microbes are obligate anaerobes, extremely sensitive to environmental shifts-and incredibly slow-growing.

Why does methanogenesis often fail?

As evident, it is important to have success in all three processes i.e. Hydrolysis, Acidogenesis, and Acetogeneis, before Methanogenesis  to succeed. This requires proper management of pH, temperature, HRT and induction of right biomass. However, in most cases all the three preceding processes are comparatively easier to get executed, it is this methanogenetic process only where most plants struggle due to:

  1. Acid accumulation/VFA Buildup
  • Acidogenesis is rapid, while methanogenesis is slow.
  • Result: VFA overload, which causes pH to drop below 6.8—a toxic zone for methanogens.

 

  1. Toxic Inhibitors

Common industrial effluents contain:

  • Heavy metals (Zn, Cu, Cr)
  • Sulfides
  • Phenols
  • Ammonia >2000 mg/L

These compounds directly inhibit methanogenic enzyme systems.

  1. Salinity and TDS stress

TDS above 15000-20000 ppm imposes osmotic stress, especially on Methanosaeta, which is already slow-growing.

 

  1. Lack of Granular Structure in Reactors

Granules in the sludge allow the methanogens to thrive in micro-environments.

  • Poor granulation = less protection = washout
How to Improve Methanogenesis- Practical Strategies

Improving methanogenesis requires a holistic approach involving operational tuning, microbial reinforcement, and environmental stability.

  1. Maintain Optimal pH: 6.8 – 7.4

Methanogens are extremely pH sensitive; any fluctuation can halt the methanogenic process that leads to unwanted reverses.

  1. Control Organic Loading Rate (OLR)

Gradually ramp up OLR during commissioning, ideal OLR: 1.5-3.5 kg COD/m3/day for stable systems. Overfeeding typically leads to acid overload and ultimately methanogen collapse.

  1. Ensure Adequate Retention Time

The ideal HRT should be between 8-15 days (depending on the substrate). The SRT should be even longer in high-loading systems.

  1. Use advanced Biocultures enriched in Methanogens

Key Traits of Effective Methanogenic Biocultures:

  • Contains both acetoclastic and hydrogenotrophic strains
  • High cell viability in anaerobic, low-oxygen environments
  • Pre-adapted to shock loads, high COD, and salinity

At Team One Biotech, our T1B Anaerobio blend includes halotolerant Methanobacterium and facultative syntrophic partners that stabilize early acid-phase products and prevent VFA accumulation.

  1. Add Conductive Materials (Bio-Stimulation)
  • Use activated carbon, biochar, or magnetite in digesters.
  • These promote direct interspecies electron transfer (DIET), bypassing slower H2 pathways
  • Result: Faster methanogenesis and increased CH4 yield
  1. Control Sulfates and Heavy Metals

 Sulfate-reducing bacteria (SRB) compete with methanogens for substrate.

  • High sulfide also directly poisons methanogens
Key Indicators of Methanogenesis Health
ParameterHealthy Range
pH6.8 – 7.4
VFA/Alkalinity ratio<0.3
ORP-300 to -400 mV
Biogas CH₄ content>60%
FoamingMinimal (indicates balance)
Gas production rateSteady increase or plateau
Methanogenesis is Fragile, but Fixable

Methanogenesis is the most sensitive yet rewarding step in anaerobic treatment. It’s where the “waste” becomes “resource,” and the environmental liability transforms into a clean, combustible asset.

But to get there, industries must move beyond legacy systems and general-purpose biology.

They must:

  • Understand the microbial bottlenecks
  • Deploy engineered or acclimated methanogens
  • Support them with pH buffering, controlled feeding, and granular retention

Only then can your anaerobic system realize its full potential — both in COD removal efficiency and renewable methane production.

Conclusion:

Achieving high COD removal technology performance depends heavily on maintaining organic loading rate control, optimal pH, and reducing VFA accumulation. Furthermore, granular sludge formation enhances microbial retention and process stability, which is vital in high-strength wastewater treatment systems.

Through targeted bioaugmentation for anaerobic digestion, enriched with salinity resistant methanogens, it’s now possible to manage volatile environments and optimize yield. These microbial consortium for ETP solutions include both acetoclastic and hydrogenotrophic archaea, enabling efficient conversion pathways and reduced inhibition.

One promising method includes introducing conductive material in digesters, which boosts DIET and facilitates faster VFA to methane conversion. This, combined with proper HRT/SRT balance and T1B Anaerobio application, unlocks new levels of process performance.

As we progress towards zero-waste water solutions and advanced ETP solutions, methanogenesis is no longer just a biological reaction—it’s a cornerstone of sustainable industrial practice.

In recent years, several biotech companies in India have made significant strides in anaerobic treatment technologies, offering customized microbial formulations.

Team One Biotech is one of the leading Biotech Companies in India, providing advanced microbial solutions like bacteria for ETP treatment and bacteria culture for wastewater treatment.
📩 Reach out now to enhance your wastewater treatment efficiency.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Thermophilic vs Mesophilic Anaerobic Wastewater Treatment in Industries

The anaerobic treatment of wastewater heavily relies on trends, and unfortunately, adaptation and innovation are very slow in progression compared to rising pollution. 

Although we are all talking about the use of AIs, sensors, IOTs, and efficient hardware, unfortunately, when we consider the industrial wastewater treatment,and broader industrial effluent treatment, we are still stuck at the same processes we were 30 years ago. If you would like to know how we are optimising wastewater treatment methods in diverse environments, feel free to connect with us today.

There needs to be a continuous update at the process level, because 99 % anaerobic plants are mesophilic, i.e, work at a temperature of 30-38 *c. In regards to biocultures for wastewater treatment, the mesophilic treatment is prominent; however, the thermophilic treatment is much more effective and compatible. 

Although it is an uncommon type of ETP water treatment, when it comes to tough-to-degrade effluents such as those with recalcitrant COD, or those with phenols, Aldehydes, etc., the thermophilic microbes treatment can be a game changer in anaerobic digestion.

This blog explores when it makes sense to shift from mesophilic to thermophilic wastewater systems, the practical advantages and challenges, and what it means for plant operators and environmental engineers.

Let us start with the basics:

ParameterMesophilic (30–38°C)Thermophilic (50–60°C)
Microbial growth rateModerateHigh
Biogas yieldModerateHigher (10–25% increase)
Pathogen killLimitedExcellent (>99%)
Energy input requiredLowerHigher
Process stabilityHighSensitive to changes
Start-up timeShorterLonger

The core of the thermophilic system lies in its high-energy fast result mechanism. The hydrolysis process is much faster, resulting in increased metabolic rate and superior pathogen control in biological wastewater treatment.

Issues where thermophilic treatment can be effective:
  1. High-Strength Industrial Wastewaters:

Effluents from industries such as dairies, food processing, slaughterhouses, distilleries and starch industries have higher levels of protiens, lipids, and polysaccharides. Thermophilic systems hydrolyze and degrade these faster, leading to:

  • Higher COD, BOD degrading efficiency.
  • Higher biogas production
  • Shorter HRT (hydraulic retention time)
  • Enhanced treatment of high-strength wastewater

2. Excess Sludge and Biomass Handling Issues:

  • While most mesophilic anaerobic systems produce higher sludge, the thermophilic system produces lower quantities of excess sludge and reduces volatile solids.

3. Strict Pathogen and Odor Control

  • The thermophilic systems give 99% pathogen elimination in STP/Centralized ETPs that handle fecal sludge or pathogen prone waste, which is crucial if:
  • Sludge is reused in agriculture
  • Water is recycled for non-potable uses
  • Especially relevant for optimized wastewater microbiome management

4. Waste Heat:

  • In case of high waste steam, condensate, or cogeneration (CHP) units, the thermal energy can be internally sourced.
  • This supports efficient energy recovery within the plant
Microbial Diversification: Fragility Meets Efficiency

In case of the microbial cultures for wastewater treatment, the thermophilic microbes are completely different from mesophilic ones. Although thermophiles are fewer but are formidable with higher metabolic abilities in the organic waste degradation.

Key Observations:

  • Thermophilic methanogens are more sensitive to pH, VFA spikes, and loading rates.
  • Shock loads (especially of fats, solvents, or salts) can cause faster crashes.
  • Granular sludge formation is more difficult at thermophilic temperatures; biofilms or hybrid systems are better suited.
Biogas enhancement: Quantitative and Qualitative

Thermophilic systems offer 10-25 % higher biogas yield per unit COD removed. More importantly, the methane content is often higher (up to 70-75%) compared to 60-65% in mesophilic digestion.

This makes the Thermophilic process enticing where:

  • On-site biogas is used for power/steam
  • Fossil fuel replacement is a business or ESG goal
  • Carbon credit mechanisms or green energy policies apply
  • Also aligns with zero liquid discharge (ZLD) and carbon neutrality efforts
Operational & Engineering Challenges in sewage treatment process

1. Temperature maintenance:

Temperature maintenance is the key of thermophilic processes, which is altogether challenging both technically and economically, especially in large tanks and in colder environments. 

2. Narrower process Window

Thermophiles work in a smaller range.  Any variation in:

  • pH (ideal: 7.2-7.6)
  • Alkalinity ratio (IA/TA < 0.3 )
  • VFA accumulation

Can lead to performance drops

3. Start-Up Lag

Thermophilic start-up can take 30-60 days, requiring:

  • Seeding with adapted sludge
  • Step-wise temperature ramping
  • High monitoring effort

4. Foaming & Scum

Due to high gas production and surfactant sensitivity, thermophilic systems foam more easily, especially during acidification.

Know the Process, Not just the Temperature:

To be precise, a thermophilic system is not for every ETP (Eluent treatment plant), however, it is effective for any ETP where it is applied. It no doubt is high energy, difficult in operations, and with fragile microbial populations, but it always outpaces mesophilic treatment in COD/BOD control, methane gas production, and cleaner sludge.

et, it’s not a plug-and-play upgrade. You must rethink your sludge management, monitoring protocols, nutrient balancing, and energy integration.

The question isn’t whether thermophilic digestion works—it’s whether your plant is ready to manage the precision and potential that comes with it.”

If you’re designing or upgrading an anaerobic system and want to make it future-proof—especially for energy recovery or zero-liquid discharge (ZLD) ambitions—don’t ignore the thermophilic path. Just walk it carefully.

Partner with Team One Biotech for expert guidance in optimizing your ETP’s aeration and biological treatment processes. Our tailored bioculture solutions and technical expertise ensure enhanced treatment efficiency in anaerobic digestion and wastewater microbiome optimization.

Learn more at www.teamonebiotech.com or reach out at sales@teamonebiotech.com/8855050575

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

The Menace of High TDS in Chemical Intermediates- Halophiles at rescue

Salts are one of the most omnipotent components present on Earth. Their presence and absence are significant in almost every chemical, physical, or biological process. Their concentration either depletes or enhances biological growth, preservation, and destruction. However, in effluent treatment plants, salts always have a destructive effect. High TDS in chemical intermediates is never welcomed by any ETP operator as it comes with operational ineffectiveness, damage to infrastructure, extreme difficulty in handling the effluent, non-compliance and high OPEX/CAPEX. Elevated TDS not only jeopardizes downstream operations, leading to scaling, corrosion, and product contamination, but also complicates effluent management, often forcing plants to deploy energy-intensive physicochemical treatments such as Multi-Effect Evaporators (MEE) and Reverse Osmosis (RO).

Although MEE/RO is effective, but is cost-intensive! so, what might be the alternative?  Well, here is the answer, HALOPHILES! Also known as halophilic bacteria, these salt-loving microbes offer a promising solution. This blog will help readers explore how halophiles in the form of microbial culture can help industries achieve operational excellence and reduce the effects and cost.

For more information or to discuss how our solutions can assist your operations, please contact us

The Impacts of High TDS :

High TDS streams in chemical intermediates plants often arise from:

  • Salt‐based reactants and catalysts: e.g., chlorides, sulfates, nitrates
  • Neutralization and pH control: addition of acid/base produces salts
  • Process by-products: dissolved organics, chelating agents, metal complexes
Operational Challenges
Effects of high TDS in chemical intermediates include:
  1. Scaling & Fouling
    • Precipitation of sparingly soluble salts (e.g., CaSO₄, BaSO₄) on heat‐exchange surfaces leads to reduced heat transfer and frequent downtime.
  2. Corrosion
    • Chloride‐rich brines attack stainless steels and other alloys, raising maintenance costs.
  3. Product Quality Risks
    • Carryover of salts compromises the purity of intermediates, requiring additional downstream purification.
Hampers Biological treatment: 
  • Due to high TDS, most of the biological wastewater treatment processes fail to generate effective biomass, hence hampering the efficiency.
Regulatory and Discharge Constraints
  • Effluent quality limits: Most jurisdictions cap TDS in discharge at 2,000–5,000 mg/L.
  • Brine disposal: Concentrated RO or evaporator brines often exceed tolerable disposal limits, leading to high disposal fees or zero-liquid discharge (ZLD) mandates.
  • Membrane/Equipment Damages:  Due to hampered biological wastewater treatment efficiency, most of the COD and dead biomass is carried into RO membranes results into their scaling or fouling in MEE.
Physicochemical Solutions: MEE & RO
Reverse Osmosis (RO)

Principle: Semi-permeable membranes allow water to pass under pressure while retaining salts.

  • Recovery ratio (R):
  • Typical performance: Recovery up to 75–85% for moderate TDS (<10,000 mg/L).
Pros:
  • Modular and relatively compact
  • High salt rejection (>99%)
Cons:
  • Membrane fouling/scaling requiring frequent cleaning
  • High‐pressure energy costs (2–6 kWh/m³)
  • Brine at 15–30% of feed volume
Multi‐Effect Evaporator (MEE)

Principle: A Series of evaporators reuses steam from one stage as the heating medium for the next, concentrating brine.

  • Steam economy: up to 8–10 kg steam/kg water evaporated.
Pros:
  • Handles very high TDS (>100,000 mg/L) and organics
  • Robust to feed variability
Cons:
  • Large footprint and capex
  • High thermal energy demand (often >500 kWh thermal/m³)
  • Generates a highly concentrated sludge

Halophilic Biocultures: A Biological Alternative

What Are Halophiles?
  • Definition: Microorganisms—including bacteria, archaea, and some fungi—that not only tolerate but require high salt concentrations (≥3% w/v NaCl) for optimal growth.
  • Types:
    • Moderate halophiles: 3–15% w/v NaCl
    • Extreme halophiles: 15–30% w/v NaCl
Mechanisms of Pollutant Removal
  1. Organic Degradation
    • Many halophiles express salt-stable enzymes (e.g., dehydrogenases, esterases) that mineralize refractory organics, aiding in biological TDS reduction.
  2. Biosorption of Inorganics
    • Cell walls and extracellular polymeric substances (EPS) bind heavy metals and ammonium ions, reducing dissolved load.
  3. Biomineralization
    • Certain strains precipitate metal sulfides or carbonates, facilitating solids separation.
Case Study: Halomonas spp. in High-Salinity Effluent:
ParameterUntreated EffluentAfter Halophilic TreatmentRemoval Efficiency
TDS (mg/L)45,00028,00038%
COD (mg/L)5,2001,10079%
NH₄⁺-N (mg/L)3104585%

In a pilot study, a consortium dominated by Halomonas elongata achieved near‐complete organic removal and 30–40% TDS reduction within 48 hours, showcasing the potential of TDS reduction using microorganisms.

Integration Strategies:
4.1 Hybrid Biological‐Physicochemical Systems
  1. Pre‐treatment with Halophiles + RO
    • Step 1: Use halophilic bioreactor to ingest organics and bind metals, lowering fouling precursors.
    • Step 2: Send biologically pre-treated stream to RO, extending membrane life and improving recovery.
  2. Post‐MEE Biological Polishing
    • Concentrate via MEE to moderate brine TDS (e.g., 80,000 mg/L → 120,000 mg/L).
    • Dilute and treat with halophiles to remove residual COD and ammonia, enabling partial recycling.
4.2 Reactor Configurations
  • Sequencing Batch Reactors (SBR): Ideal for flexible loading and high-salt adaptation cycles.
  • Membrane Bioreactors (MBR): Combine biomass retention with ultrafiltration, ensuring high mixed liquor suspended solids (MLSS).
  • Fixed-Film Reactors (e.g., Biofilm Carriers): EPS‐rich biofilms on carriers that thrive in saline feed.
Design & Operational Best Practices:
AspectRecommendation
Salinity GradientsGradual acclimation: start at 3% NaCl, ramp to process levels over 2–3 weeks.
pH ControlMaintain 7.5–8.5; extremes impair enzymatic activity.
Nutrient SupplementationC:N:P ratio of ~100:5:1 for robust growth.
Temperature30–37 °C to optimize halophilic metabolism.
Hydraulic Retention Time24–72 hours, depending on target removal efficiencies.
Mixing & OxygenationEnsure DO ≥2 mg/L for aerobic halophiles; N₂ sparging for anaerobic strains.
Economic & Environmental Benefits:
MetricConventional MEE/RO OnlyHybrid with Halophiles
Energy Consumption (kWh/m³)6–10 (electrical) + 500 (thermal)3–5 (electrical) + 300 (thermal)
Membrane Cleaning FrequencyEvery 2–4 weeksEvery 8–12 weeks
Brine Volume for Disposal (%)20–3010–15
Chemical Usage (antiscalants)HighModerate
Carbon Footprint (kg CO₂e/m³)15–208–12

By biologically reducing foulants and salinity, plants can halve brine volumes, extend membrane life, and cut overall energy and chemical costs by up to 30%. Moreover, the biodegraded organics lessen the environmental hazards of any unavoidable discharges, promoting eco-friendly chemical processing.

Conclusion:

High TDS in chemical intermediates has traditionally been corralled by MEE and RO—solutions that are effective but capital- and energy-intensive, and that generate challenging brines. Halophilic biocultures, however, offer a compelling biological route to alleviate TDS and organic loads, enhancing and de-risking conventional treatment trains. By integrating salt-adapted microbes—either as a pretreatment before RO or as a polishing step after evaporation—plants can achieve lower energy footprints, reduced chemical consumption, and more manageable brine streams.

As the industry seeks sustainability and cost-efficiency, harnessing the power of halophiles represents a strategic pivot: one that turns the very menace of high salinity into an opportunity for greener, sharper operations.

Are high TDS levels threatening your effluent compliance? Discover how a customized biological approach can turn the tide. Contact us to discuss a no-obligation site assessment and see how TeamOne’s expertise can optimize your industrial wastewater treatment.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Benefits of Bioculture in Wastewater Treatment
Benefits of Bioculture in Wastewater Treatment Explained

In today’s world, where sustainability and environmental responsibility are more than just buzzwords, wastewater treatment plays a vital role in keeping our ecosystems clean and our water reusable. One of the most eco-friendly and efficient ways to enhance this process is by using Bioculture in wastewater treatment.

But what exactly is bioculture? How does it work? Contact us  know more about why more industries are switching to this natural solution?

Let’s dive right in.

What is Bioculture in Wastewater Treatment?

 

In simple terms, bioculture refers to a mix of beneficial, naturally occurring microbes—bacteria, fungi, and enzymes—that are introduced into wastewater to accelerate the breakdown of organic matter.

Unlike traditional chemical treatments, bioculture is:

  • Non-toxic

  • Eco-friendly

  • Cost-effective

These living microorganisms digest contaminants, convert harmful substances into harmless byproducts like water and carbon dioxide, and improve overall water quality.

How Does Bioculture Work?

 

When added to wastewater, the microbes in bioculture immediately go to work:

  1. Break Down Organic Compounds – Such as fats, oils, grease, and sludge.

  2. Reduce BOD and COD Levels – Lowering Biochemical and Chemical Oxygen Demand.

  3. Control Odour – By eliminating the root cause (organic waste), not just masking the smell.

  4. Enhance MLSS – Improves microbial growth and activity in the aeration tank.

The result? Cleaner water, faster treatment cycles, and better compliance with environmental norms.

Top Benefits of Using Bioculture in Wastewater Treatment

 

1. ✅ Improves Treatment Efficiency

Bioculture can speed up the biological treatment process, ensuring that wastewater is treated faster and more thoroughly.

2. 🌍 Environmentally Friendly

It reduces the need for harmful chemicals and promotes a natural purification process, making it a sustainable choice for industries.

3. 💰 Cost-Effective

Lower chemical usage, reduced sludge volume, and minimal maintenance result in significant cost savings over time.

4. 🦠 Enhanced Microbial Activity

Bioculture introduces robust strains of microbes that can thrive even in harsh conditions, ensuring consistent performance.

5. 🚫 Reduces Foul Odors

Because it breaks down waste at the microbial level, bioculture eliminates the cause of bad smells rather than just covering them up.

6. 🏭 Suitable for Diverse Industries

From textiles and food processing to municipal sewage and pharmaceuticals, bioculture works across a wide range of wastewater treatment applications.

Applications of Bioculture: Where Is It Used?

 

  • Effluent Treatment Plants (ETPs)

  • Sewage Treatment Plants (STPs)

  • Slaughterhouse Wastewater

  • Textile and Dyeing Industry

  • Food and Beverage Plants

  • Chemical and Pharma Waste

Companies like Team One Biotech offer customized bioculture solutions tailored to your industry and wastewater challenges.

Why Choose Team One Biotech for Bioculture Solutions?

 

At Team One Biotech, we understand that no two wastewater challenges are alike. That’s why our bioculture products are:

  • Scientifically formulated

  • Lab tested and field proven

  • Delivered with expert technical support

Whether you’re starting a new plant or optimizing an existing one, we help you transition to natural wastewater treatment—safely, affordably, and efficiently.

 

✅ FAQs About Bioculture in Wastewater Treatment

 

🔹 What is bioculture in wastewater treatment?

Bioculture is a mix of naturally occurring beneficial microbes used to break down organic waste in wastewater, improving treatment efficiency and reducing pollutants.

🔹 How does bioculture improve wastewater treatment?

It accelerates the biological degradation process, reduces BOD/COD, minimizes odors, and cuts down on sludge formation.

🔹 Is bioculture safe for the environment?

Yes, bioculture is completely eco-friendly and biodegradable, making it a safe and sustainable alternative to chemical treatments.

🔹 How often should bioculture be added to a treatment system?

The dosage and frequency depend on the plant’s capacity and the type of waste. Team One Biotech offers custom dosage recommendations based on analysis.

🔹 Can bioculture be used in both STPs and ETPs?

Absolutely! Bioculture is versatile and works effectively in both sewage and effluent treatment plants.

Final Thoughts

 

The shift toward natural and sustainable wastewater treatment is more important than ever—and bioculture is leading the charge. Whether you’re managing an industrial effluent plant or a municipal sewage facility, investing in bioculture can dramatically improve your results while safeguarding the planet.

Want expert guidance or tailored bioculture solutions?

👉Connect with Team One Biotech today and take the first step toward cleaner, greener wastewater management.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

 

Improving Oxygen Transfer Efficiency in Chemical ETP
Improving Oxygen Transfer efficiency in a Chemical manufacturing plant
Background

A mid-size chemical manufacturing company situated in Madhya Pradesh was facing efficiency issues in improving oxygen transfer efficiency in its ETP, such as low efficiency, biomass suspension, and diffuser dysfunction. Despite maintaining a good overall diffused aeration system, their biomass was not developing, and MLVSS was very low.

As a result, the client incurred high CAPEX due to unnecessary diffuser replacements and remained non-compliant with regulatory COD/BOD limits.Facing challenges in improving oxygen transfer efficiency and facing high energy costs? Let Team One Biotech help.

ETP details:

The industry had primary treatment, biological treatment, and then a tertiary treatment.

Flow (current)750 KLD
Type of processASP
No. of aeration tanks1
Capacity of aeration tanks1150 KL
Challenges: 

Parameters Avg. Inlet parameters(PPM)Avg. secondary system outlet parameters(PPM)
COD180006000
BOD85002800-3000
TDS300002500
Problem Statement:

The client observed persistently low dissolved oxygen (DO) levels in the aeration tank despite extended blower run-times and increased air supply. This resulted in:

  • Sub-optimal biological treatment
  • Elevated energy costs
  • Occasional odor issues and inconsistent COD/BOD reduction

A preliminary diagnosis indicated biofilm accumulation and diffuser fouling, affecting fine bubble formation and limiting oxygen dispersion.

Our Approach

Team One Biotech initiated a comprehensive on-site audit including:

Diffuser Health Check

  • Inspected diffuser membranes for fouling
  • Identified scaling and microbial slimes affecting pore performance

Baseline Monitoring

  • DO levels across the tank: <1.5 mg/L
  • Specific Oxygen Uptake Rate (SOUR): <15 mg O₂/g VSS/hr
  • Blower energy use: ~65 kWh/day
  • OTE Baseline: Estimated OTE was 12%

Microbial Evaluation

  • Floc structure was loose, with filamentous dominance
  • Low settleability (SVI > 200)

To implement a cost-effective, eco-friendly bioremediation strategy that:

  1. Enhances the degradation of formaldehyde and glutaraldehyde.
  2. Restores biological treatment efficiency.
  3. Achieves compliance with CPCB norms.
Solution

We proposed a 2-fold intervention:

1.Application of T1B Aerobio Bioculture

  • Dose: 10 ppm daily for 10 days, 8 ppm for next 10 days, and 5 ppm for next 10 days, then 3 ppm as maintenance every day.
  • Objective: Enrich native microbial diversity and improve biomass quality T1b Aerobio bioculture solution by improving oxygen transfer efficiency

2. Aeration System Optimization

  • Conducted sequential backflushing of diffusers
  • Realigned blower duty cycles with microbial demand using DO automation feedback

Monitored DO, pH, and ORP to ensure a stable environment.

Results:

After 60 days of implementation:

Parameters Before interventionAfter Intervention
DO in Aeration Tank1.2 mg/L2.8 mg/L
SOUR1             3.6 mg O₂/g VSS/hr22.3 mg O₂/g VSS/hr
SVI210 mL/g120 mL/g
COD Reduction72%87%
Blower Runtime24 hrs/day16 hrs/day
Energy Use65 kWh/day38 kWh/day
OTE12 %21.4 %
Application results before and after

Conclusion

With the combined effect of T1B Aerobio bioculture and technical aeration optimization, the client achieved a 78.3% increase in oxygen transfer efficiency. This translated into:

  • Significant energy savings
  • Improved microbial activity and settleability
  • Stable effluent quality, meeting compliance standards

This case demonstrates how biology-driven solutions, coupled with system know-how, can deliver tangible performance and cost benefits in industrial wastewater treatment.

Ready to optimize your ETP performance? Connect with us today

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Oxygen Transfer Efficiency in wastewater treatment
Oxygen Transfer Efficiency vs. Real-World Conditions: The Hidden Impacts of Diffuser Fouling and Uneven Airflow

In the world of wastewater treatment, Oxygen Transfer Efficiency (OTE) is a critical performance indicator, especially in biological treatment systems where aerobic microorganisms drive the breakdown of organic matter. On paper, system designs often promise high standard oxygen transfer efficiency based on clean-water testing. But in real-world conditions, actual oxygen transfer often falls significantly short — and two often-overlooked culprits are diffuser fouling and uneven airflow distribution.

At Team One Biotech, we help ETPs and STPs uncover these hidden inefficiencies. Contact us today to audit and improve your aeration system’s real-world performance.

Understanding Oxygen Transfer Efficiency

OTE is the percentage of oxygen from the air that actually dissolves into the wastewater. Higher efficiency means better microbial activity, lower energy costs, and more effective treatment. Bottom diffused aeration systems, particularly those with fine bubble diffuser oxygen transfer efficiency, are widely used due to their ability to maximize surface area and minimize energy use.

However, clean-water testing used to estimate standard OTE doesn’t reflect operational realities like biofilm buildup, particulate matter, or operational inconsistencies.

The Silent Saboteur: Diffuser Fouling

Over time, aeration diffusers — especially fine-pore ones — become clogged with biofilms, sludge solids, and inorganic scaling. This fouling:

  • Increases air resistance, reducing overall airflow.
  • Causes larger bubbles, decreasing oxygen transfer surface area.
  • Leads to non-uniform oxygen distribution, harming microbial populations in under-aerated zones.

As a result, a system that once transferred oxygen at 30% efficiency might drop to 15–20%, doubling the energy requirement for the same biological load.

🔍 Poor sludge management can accelerate diffuser fouling, leading to cascading operational issues.

Tip: Regular diffuser inspection, cleaning schedules, and selecting fouling-resistant materials (e.g., PTFE-coated membranes) can mitigate this loss.

Uneven Airflow: An Invisible Imbalance

Even with clean diffusers, uneven airflow distribution due to pipe layout, blower inconsistency, or back pressure variations can cause:

  • Overaeration in some zones (wasted energy, poor floc formation),
  • Underaeration in others (anaerobic pockets, filamentous growth, odor issues).

This imbalance affects overall oxygen transfer efficiency and biological performance, especially in large or compartmentalized aeration tanks.

The Cost of Ignoring Reality

Ignoring these issues doesn’t just degrade standard OTE — it impacts the entire secondary system:

  • Reduced MLSS activity due to low DO,
  • Increased sludge production from partial degradation,
  • Higher energy bills with little performance gain,
  • Poor compliance with discharge norms due to high BOD/COD.
Real-World Solutions
  1. Flow Balancing: Use air flow meters and control valves to ensure uniform distribution.
  2. Blower Management: VFD-controlled blowers can respond to real-time DO demands, reducing peaks and troughs.
  3. Smart Monitoring: Modern SCADA systems and DO sensors help identify zones of concern early.
  4. Preventive Maintenance: Scheduled diffuser cleaning and aeration audits pay off in energy savings and treatment reliability.
Final Thoughts

It’s time the industry moves beyond theoretical OTE and embraces a “Reality-Based Aeration Strategy”. Understanding and addressing diffuser fouling and uneven airflow are essential for sustainable wastewater treatment — both environmentally and economically.

At Team One Biotech, we specialize in supporting ETPs and STPs in optimizing their biological systems, including audits that uncover hidden losses in aeration efficiency. Let’s not just treat wastewater — let’s treat it wisely.

Reach out to us today to make sure your system isn’t silently losing efficiency — and money.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Seasonal Microbial Shifts Wastewater Treatment
ETP Performance Drift Due to Seasonal Microbial Shifts
Why Weather Matters More Than You Think in Biological Wastewater Treatment

In the evolving field of biological wastewater treatment, the performance of an effluent treatment plant manufacturer-designed system is often expected to be consistent. Yet, seasonal changes bring unseen forces into play—namely, seasonal microbial shifts.

Yes, the weather outside does impact what’s happening inside your biological tank.

From anaerobic wastewater treatment facilities to residential wastewater treatment systems, the health and efficiency of your microbial workforce are key to sustainability. This article dives into how climate-driven microbial dynamics can cause performance drifts—and how proactive strategies can future-proof your system.

👉 Contact us to know how your ETP can be adapted for every season using customized biological solutions.

The Invisible Workforce Behind ETPs

The core of any biological treatment system is its microbial community in ETP. These microorganisms are responsible for breaking down organic pollutants, converting ammonia to nitrate, and ensuring compliance with regulatory discharge norms.

But just like any workforce, they too have their comfort zones.

Seasonal Microbial Shifts: More Than Just Temperature

Microbes are sensitive to environmental parameters such as:

  • Temperature: Metabolic rates slow down in colder months, especially for nitrifiers.
  • Dissolved Oxygen (DO): Oxygen solubility increases in winter but may be limited due to reduced blower performance or sludge blanket fluctuations.
  • pH & Nutrient Uptake: Seasonal variations in industrial discharge or rainfall can alter pH and nutrient availability, affecting microbial dynamics.
  • Hydraulic Load: Monsoon seasons often increase flow, diluting influent but stressing retention time and contact efficiency.

These subtle shifts can lead to a noticeable drift in performance—sometimes gradual, sometimes sudden.

Microbial Dynamics in Action

Here’s a simplified breakdown of how microbial populations can change across seasons:

  • Winter: Slow growth of nitrifiers (Nitrosomonas/Nitrobacter) → Ammonia carryover risk. Sludge settling improves due to reduced filamentous growth.
  • Summer: Faster BOD removal but potential filamentous bulking due to low DO at higher temps.
  • Monsoon: Washout of biomass and sudden influx of organics or toxins due to surface runoff or diluted effluent—impacting both MLSS in wastewater and treatment efficiency.
What Your Parameters Are Telling You (Seasonal Indicators)
ParameterIdeal RangeSeasonal Variation & What It Indicates
DO (mg/L)2.0 – 3.5<2.0 in summer = filamentous growth; >4.0 in winter with low activity = underperforming bugs
MLSS (mg/L)2500 – 4000Monsoon may dilute or wash out biomass, dropping MLSS suddenly
SVI (mL/g)80 – 120>150 in summer suggests bulking; <70 in winter may indicate compact sludge
F/M Ratio0.2 – 0.4Low in winter due to slow bug activity; high post-monsoon due to fresh organic load
Ammonia (mg/L)<5 (in outlet)Elevated in winter due to slow nitrification; low in summer if nitrifiers are active
pH6.8 – 7.5Rainfall or industrial shifts can push pH outside this range, affecting bug health

By tracking these parameters monthly or weekly, early warnings of microbial stress can be detected and acted upon proactively.

What Can Be Done?
  1. Seasonal Bioaugmentation
    Introducing robust microbial cultures tailored for low-temp or high-load conditions can bridge seasonal performance gaps.
  2. Data-Driven Monitoring
    Trends in DO, SVI, ammonia, and MLSS can forecast seasonal drifts before they become problematic.
  3. Adjust Operating Parameters
    Fine-tune aeration, sludge wasting, or HRT based on seasonal projections for improved biological nutrient removal.
  4. Preventive Culture Dosing
    Pre-dosing before seasonal change (e.g., winter onset or monsoon) can prepare the system for upcoming stress.
Final Thought

Weather is inevitable, but ETP failures are not. Understanding and anticipating microbial behavior shifts with seasons can be the difference between compliance and chaos.

Let’s stop blaming the bugs—and start working with them.

Have you observed microbial shift or performance drift in your ETP system? Let’s connect and explore how tailored microbial strategies can make your system season-proof.

📧 Email: sales@teamonebiotech.com

🌐 Visit: www.teamonebiotech.com

🔹 Discover More on YouTube – Watch our latest insights & innovations!-

🔹 Connect with Us on LinkedIn – Stay updated with expert content & trends!

Scan the code